設(shè)函數(shù)f(x)=.已知f(a)>1.則a的取值范圍是 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=,已知f(a)>1,則a的取值范圍是(    )
A.(-∞,-2)∪(,+∞)
B.()
C.(-∞,-2)∪(,1)
D.(-2,)∪(1,+∞)

查看答案和解析>>

設(shè)函數(shù)f(x)=,已知f(a)>1,則a的取值范圍是(    )

A.(-∞,-2)∪(,+∞)
B.(,)
C.(-∞,-2)∪(,1)
D.(-2,)∪(1,+∞)

查看答案和解析>>

設(shè)函數(shù)f(x)=已知f(a)>1,則a的取值范圍是

[  ]

A.(-∞,-2)∪(-,+∞)

B.

C.(-∞,-2)∪(-,1)

D.(-2,-)∪(1,+∞)

查看答案和解析>>

設(shè)函數(shù)f(x)=已知f(a)>1,則實數(shù)a的取值范圍是________.(用區(qū)間表示出來)

查看答案和解析>>

設(shè)函數(shù)f(x)=已知f(a)>1,則實數(shù)a的取值范圍為

[  ]

A.(-∞,-2)∪(-,+∞)

B.(-,)

C.(-∞,-2)∪(-,1)

D.(-2,-)∪(1,+∞)

查看答案和解析>>

難點磁場

解:原不等式可化為:6ec8aac122bd4f6e>0,

即[(a-1)x+(2-a)](x-2)>0.

當(dāng)a>1時,原不等式與(x6ec8aac122bd4f6e)(x-2)>0同解.

6ec8aac122bd4f6e≥2,即0≤a<1時,原不等式無解;若6ec8aac122bd4f6e<2,即a<0或a>1,于是a>1時原不等式的解為(-∞,6ec8aac122bd4f6e)∪(2,+∞).

當(dāng)a<1時,若a<0,解集為(6ec8aac122bd4f6e,2);若0<a<1,解集為(2,6ec8aac122bd4f6e)

綜上所述:當(dāng)a>1時解集為(-∞,6ec8aac122bd4f6e)∪(2,+∞);當(dāng)0<a<1時,解集為(2,6ec8aac122bd4f6e);當(dāng)a=0時,解集為6ec8aac122bd4f6e;當(dāng)a<0時,解集為(6ec8aac122bd4f6e,2).

殲滅難點訓(xùn)練

一、1.解析:由f(x)及f(a)>1可得:

6ec8aac122bd4f6e    ①  或6ec8aac122bd4f6e   ②  或6ec8aac122bd4f6e   ③

解①得a<-2,解②得-6ec8aac122bd4f6ea<1,解③得x6ec8aac122bd4f6e

a的取值范圍是(-∞,-2)∪(-6ec8aac122bd4f6e,1)

答案:C

二、

2.解析:由已知ba2f(x),g(x)均為奇函數(shù),∴f(x)<0的解集是(-b,-a2),g(x)<0的解集是(-6ec8aac122bd4f6e).由f(x)?g(x)>0可得:

6ec8aac122bd4f6e 

x∈(a2,6ec8aac122bd4f6e)∪(-6ec8aac122bd4f6e,-a2)

答案:(a26ec8aac122bd4f6e)∪(-6ec8aac122bd4f6e,-a2)

3.解析:原方程可化為cos2x-2cosxa-1=0,令t=cosx,得t2-2ta-1=0,原問題轉(zhuǎn)化為方程t2-2ta-1=0在[-1,1]上至少有一個實根.令f(t)=t2-2ta-1,對稱軸t=1,畫圖象分析可得6ec8aac122bd4f6e解得a∈[-2,2].

答案:[-2,2]

三、

4.解:(1)∵適合不等式|x2-4x+p|+|x-3|≤5的x的最大值為3,

x-3≤0,∴|x-3|=3-x.

若|x2-4x+p|=-x2+4xp,則原不等式為x2-3x+p+2≥0,其解集不可能為{x|x≤3}的子集,∴|x2-4x+p|=x2-4x+p.

∴原不等式為x2-4x+p+3-x≤0,即x2-5x+p-2≤0,令x2-5x+p-2=(x-3)(xm),可得m=2,p=8.

(2)f(x)=6ec8aac122bd4f6e,∴f-1(x)=log86ec8aac122bd4f6e (-1<x<16ec8aac122bd4f6e,

∴有l(wèi)og86ec8aac122bd4f6e>log86ec8aac122bd4f6e,∴l(xiāng)og8(1-x)<log8k,∴1-xk,∴x>1-k.

∵-1<x<1,kR+,∴當(dāng)0<k<2時,原不等式解集為{x|1-kx<1};當(dāng)k≥2時,原不等式的解集為{x|-1<x<16ec8aac122bd4f6e.

5.解:由f(1)=6ec8aac122bd4f6ea+b+c=6ec8aac122bd4f6e,令x2+6ec8aac122bd4f6e=2x2+2x+6ec8aac122bd4f6ex6ec8aac122bd4f6e=-1,由f(x)≤2x2+2x+6ec8aac122bd4f6e推得

f(-1)≤6ec8aac122bd4f6e.

f(x)≥x2+6ec8aac122bd4f6e推得f(-1)≥6ec8aac122bd4f6e,∴f(-1)=6ec8aac122bd4f6e,∴ab+c=6ec8aac122bd4f6e,故

2(a+c)=5,a+c=6ec8aac122bd4f6eb=1,∴f(x)=ax2+x+(6ec8aac122bd4f6ea).

依題意:ax2+x+(6ec8aac122bd4f6ea)≥x2+6ec8aac122bd4f6e對一切xR成立,

a≠1且Δ=1-4(a-1)(2-a)≤0,得(2a-3)2≤0,

f(x)=6ec8aac122bd4f6ex2+x+1

易驗證:6ec8aac122bd4f6ex2+x+1≤2x2+2x+6ec8aac122bd4f6exR都成立.

∴存在實數(shù)a=6ec8aac122bd4f6e,b=1,c=1,使得不等式:x2+6ec8aac122bd4f6ef(x)≤2x2+2x+6ec8aac122bd4f6e對一切xR都成立.

6.解:(1)∵-1≤sinθ≤1,1≤sinθ+2≤3,即當(dāng)x∈[-1,1]時,f(x)≤0,當(dāng)x∈[1,3]時,f(x)≥0,∴當(dāng)x=1時f(x)=0.∴1+p+q=0,∴q=-(1+p)

(2)f(x)=x2+px-(1+p),

當(dāng)sinθ=-1時f(-1)≤0,∴1-p-1-p≤0,∴p≥0

(3)注意到f(x)在[1,3]上遞增,∴x=3時f(x)有最大值.即9+3p+q=14,9+3p-1-p=14,∴p=3.

此時,f(x)=x2+3x-4,即求x∈[-1,1]時f(x)的最小值.又f(x)=(x+6ec8aac122bd4f6e)26ec8aac122bd4f6e,顯然此函數(shù)在[-1,1]上遞增.

∴當(dāng)x=-1時f(x)有最小值f(-1)=1-3-4=-6.

7.解:(1)當(dāng)a>1時,原不等式等價于不等式組6ec8aac122bd4f6e

6ec8aac122bd4f6e由此得1-a6ec8aac122bd4f6e.因為1-a<0,所以x<0,∴6ec8aac122bd4f6ex<0.

(2)當(dāng)0<a<1時,原不等式等價于不等式組:6ec8aac122bd4f6e                     

由 ①得x>1或x<0,由②得0 <x6ec8aac122bd4f6e,∴1<x6ec8aac122bd4f6e.

綜上,當(dāng)a>1時,不等式的解集是{x|6ec8aac122bd4f6ex<06ec8aac122bd4f6e,當(dāng)0<a<1時,不等式的解集為{x|1<x6ec8aac122bd4f6e}.

8.解:由已知得0<a<1,由f(3mx-1)>f(1+mxx2)>f(m+2),x∈(0,16ec8aac122bd4f6e恒成立.

6ec8aac122bd4f6ex∈(0,16ec8aac122bd4f6e恒成立.

整理,當(dāng)x∈(0,1)時,6ec8aac122bd4f6e恒成立,即當(dāng)x∈(0,16ec8aac122bd4f6e時,6ec8aac122bd4f6e恒成立,且x=1時,6ec8aac122bd4f6e恒成立,

6ec8aac122bd4f6ex∈(0,16ec8aac122bd4f6e上為減函數(shù),∴6ec8aac122bd4f6e<-1,

m6ec8aac122bd4f6e恒成立6ec8aac122bd4f6em<0.

又∵6ec8aac122bd4f6e,在x∈(0,16ec8aac122bd4f6e上是減函數(shù),?

6ec8aac122bd4f6e<-1.

m6ec8aac122bd4f6e恒成立6ec8aac122bd4f6em>-1當(dāng)x∈(0,1)時,6ec8aac122bd4f6e恒成立6ec8aac122bd4f6em∈(-1,0)①

當(dāng)x=1時,6ec8aac122bd4f6e,即是6ec8aac122bd4f6em<0                                                 ②

∴①、②兩式求交集m∈(-1,0),使x∈(0,16ec8aac122bd4f6e時,f(3mx-1)>f(1+mxx2)>f(m+2)恒成立,m的取值范圍是(-1,0)

 

 


同步練習(xí)冊答案