△ABC中.A為動點.B.C為定點.B(-,0),C(,0).且滿足條件sinC-sinB=sinA,則動點A的軌跡方程為 . 查看更多

 

題目列表(包括答案和解析)

ABC中,A為動點,B、C為定點,B(-,0),C(,0),且滿足條件sinC-sinB=sinA,則動點A的軌跡方程為_________.

查看答案和解析>>

ABC中,A為動點,B、C為定點,B(-,0),C(,0),且滿足條件sinC-sinB=sinA,則動點A的軌跡方程為_________.

查看答案和解析>>

△ABC中,A為動點,B、C為定點,B(,0),C(,0),且滿足條件sinC-sinB=sinA,則動點A的軌跡方程是

[  ]

A.(y≠0)

B.(y≠0)

C.的左支(y≠0)

D.的右支(y≠0)

查看答案和解析>>

在△ABC中,A、B為定點,C為動點,記∠A、∠B、∠C的對邊分別為a、b、c,已知c=2,且存在常數(shù)λ
(λ>0),使得abcos2
C2

(1)求動點C的軌跡,并求其標準方程;
(2)設點O為坐標原點,過點B作直線l與(1)中的曲線交于M,N兩點,若OM⊥ON,試確定λ的范圍.

查看答案和解析>>

在△ABC中,兩個定點A(-3,0)B(3,0),△ABC的垂心H(三角形三條高線的交點)是AB邊上高線CD的中點.
(1)求動點C的軌跡方程;
(2)斜率為2的直線l交動點C的軌跡于P、Q兩點,求△OPQ面積的最大值(O是坐標原點).

查看答案和解析>>

6ec8aac122bd4f6e難點磁場

解:建立坐標系如圖所示,

設|AB|=2a,則A(-a,0),B(a,0).

M(x,y)是軌跡上任意一點.

則由題設,得6ec8aac122bd4f6e=λ,坐標代入,得6ec8aac122bd4f6e=λ,化簡得

(1-λ2)x2+(1-λ2)y2+2a(1+λ2)x+(1-λ2)a2=0

(1)當λ=1時,即|MA|=|MB|時,點M的軌跡方程是x=0,點M的軌跡是直線(y軸).

(2)當λ≠1時,點M的軌跡方程是x2+y2+6ec8aac122bd4f6ex+a2=0.點M的軌跡是以

(-6ec8aac122bd4f6e,0)為圓心,6ec8aac122bd4f6e為半徑的圓.

殲滅難點訓練

一、1.解析:∵|PF1|+|PF2|=2a,|PQ|=|PF2|,

∴|PF1|+|PF2|=|PF1|+|PQ|=2a,

即|F1Q|=2a,∴動點Q到定點F1的距離等于定長2a,故動點Q的軌跡是圓.

答案:A

2.解析:設交點P(x,y),A1(-3,0),A2(3,0),P1(x0,y0),P2(x0,-y0)

A1、P1、P共線,∴6ec8aac122bd4f6e

A2、P2、P共線,∴6ec8aac122bd4f6e

解得x0=6ec8aac122bd4f6e

答案:C

二、3.解析:由sinC-sinB=6ec8aac122bd4f6esinA,得cb=6ec8aac122bd4f6ea,

∴應為雙曲線一支,且實軸長為6ec8aac122bd4f6e,故方程為6ec8aac122bd4f6e.

答案:6ec8aac122bd4f6e

4.解析:設P(x,y),依題意有6ec8aac122bd4f6e,化簡得P點軌跡方程為4x2+4y2-85x+100=0.

答案:4x2+4y2-85x+100=0

三、5.解:設過BC異于l的兩切線分別切⊙O′于D、E兩點,兩切線交于點P.由切線的性質知:|BA|=|BD|,|PD|=|PE|,|CA|=|CE|,故|PB|+|PC|=|BD|+|PD|+|PC|=|BA|+|PE|+|PC|

=|BA|+|CE|=|AB|+|CA|=6+12=18>6=|BC|,故由橢圓定義知,點P的軌跡是以B、C為兩焦點的橢圓,以l所在的直線為x軸,以BC的中點為原點,建立坐標系,可求得動點P的軌跡方程為6ec8aac122bd4f6e=1(y≠0)

6.解:設P(x0,y0)(x≠±a),Q(x,y).

A1(-a,0),A2(a,0).

由條件6ec8aac122bd4f6e

而點P(x0,y0)在雙曲線上,∴b2x02a2y02=a2b2.

b2(-x2)-a2(6ec8aac122bd4f6e)2=a2b2

化簡得Q點的軌跡方程為:a2x2b2y2=a4(x≠±a).

7.解:(1)設P點的坐標為(x1,y1),則Q點坐標為(x1,-y1),又有A1(-m,0),A2(m,0),

A1P的方程為:y=6ec8aac122bd4f6e                                                                 ①

A2Q的方程為:y=-6ec8aac122bd4f6e                                                                  ②

①×②得:y2=-6ec8aac122bd4f6e                                                                ③

又因點P在雙曲線上,故6ec8aac122bd4f6e

代入③并整理得6ec8aac122bd4f6e=1.此即為M的軌跡方程.

(2)當mn時,M的軌跡方程是橢圓.

(?)當mn時,焦點坐標為(±6ec8aac122bd4f6e,0),準線方程為x6ec8aac122bd4f6e,離心率e=6ec8aac122bd4f6e;

(?)當mn時,焦點坐標為(0,±6ec8aac122bd4f6e),準線方程為y6ec8aac122bd4f6e,離心率e=6ec8aac122bd4f6e.

8.解:(1)∵點F2關于l的對稱點為Q,連接PQ

∴∠F2PR=∠QPR,|F2R|=|QR|,|PQ|=|PF2|

又因為l為∠F1PF2外角的平分線,故點F1、P、Q在同一直線上,設存在R(x0,y0),Q(x1,y1),F1(-c,0),F2(c,0).

|F1Q|=|F2P|+|PQ|=|F1P|+|PF2|=2a,則(x1+c)2+y12=(2a)2.

6ec8aac122bd4f6e6ec8aac122bd4f6e

x1=2x0c,y1=2y0.

∴(2x0)2+(2y0)2=(2a)2,∴x02+y02=a2.

R的軌跡方程為:x2+y2=a2(y≠0)

(2)如右圖,∵SAOB=6ec8aac122bd4f6e|OA|?|OB|?sinAOB=6ec8aac122bd4f6esinAOB

當∠AOB=90°時,SAOB最大值為6ec8aac122bd4f6ea2.

此時弦心距|OC|=6ec8aac122bd4f6e.

在Rt△AOC中,∠AOC=45°,

6ec8aac122bd4f6e

 

 


同步練習冊答案