在長方體ABCD―A1B1C1D1中.底面是邊長為2的正方形.高為4.則點A1到截面AB1D1的距離是 查看更多

 

題目列表(包括答案和解析)

在長方體ABCD-A1B1C1D1中,底面是邊長為2的正方形,高為4,則點A1到截面AB1D1的距離是( 。
A、
8
3
B、
3
8
C、
4
3
D、
3
4

查看答案和解析>>

在長方體ABCDA1B1C1D1中,底面是邊長為2的正方形,高為4,則點A1到截面AB1D1的距離是(    )

A.            B.                   C.                   D. 

查看答案和解析>>

在長方體ABCD-A1B1C1D1中,底面是邊長為2的正方形,高為4,則點A1到截面AB1D1的距離是(  )
A.
8
3
B.
3
8
C.
4
3
D.
3
4

查看答案和解析>>

在長方體ABCD-A1B1C1D1中,底面是邊長為2的正方形,高為4,則點A1到截面AB1D1的距離是( )
A.
B.
C.
D.

查看答案和解析>>

在長方體ABCD-A1B1C1D1中,底面是邊長為2的正方形,高為4,則點A1到截面AB1D1的距離是( )
A.
B.
C.
D.

查看答案和解析>>

難點磁場

1.(1)證明:∵A1C1=B1C1,D1A1B1的中點,∴C1D1A1B1D1,

又∵平面A1ABB1⊥平面A1B1C1,∴C1D1⊥平面A1B1BA

AB16ec8aac122bd4f6e平面A1ABB1,∴AB1C1D1.

(2)證明:連結D1D,∵DAB中點,∴DD16ec8aac122bd4f6eCC1,∴C1D1CD,由(1)得CDAB1,又∵C1D1⊥平面A1ABB1,C1BAB1,由三垂線定理得BD1AB1,

又∵A1DD1B,∴AB1A1DCDA1D=D,∴AB1⊥平面A1CD.

(3)解:由(2)AB1⊥平面A1CDO,連結CO1得∠ACO為直線AC與平面A1CD所成的角,∵AB1=3,AC=A1C1=2,∴AO=1,∴sinOCA=6ec8aac122bd4f6e,

∴∠OCA=6ec8aac122bd4f6e.

殲滅難點訓練

一、1.解析:如圖,設A1C1B1D1=O1,∵B1D1A1O1B1D1AA1,∴B1D1⊥平面AA1O1,故平面AA1O1AB1D1,交線為AO1,在面AA1O1內過A1A1HAO1H,則易知A1H長即是點A1到平面AB1D1的距離,在Rt△A1O1A中,A1O1=6ec8aac122bd4f6e,AO1=36ec8aac122bd4f6e,由A1O1?A1A=h?AO1,可得A1H=6ec8aac122bd4f6e.

6ec8aac122bd4f6e

答案:C?

2.解析:如圖,在l上任取一點P,過P分別在αβ內作a′∥a,b′∥b,在a′上任取一點A,過AACl,垂足為C,則ACβ,過CCBb′交b′于B,連AB,由三垂線定理知ABb′,

6ec8aac122bd4f6e

∴△APB為直角三角形,故∠APB為銳角.

答案:C

二、3.解析:①是假命題,直線XY、Z位于正方體的三條共點棱時為反例,②③是真命題,④是假命題,平面XY、Z位于正方體的三個共點側面時為反例.

答案:②③

4.④

三、5.證明:(1)∵PA⊥底面ABCD,∴ADPD在平面ABCD內的射影,

CD6ec8aac122bd4f6e平面ABCDCDAD,∴CDPD.

(2)取CD中點G,連EGFG,

E、F分別是ABPC的中點,∴EGAD,FGPD

∴平面EFG∥平面PAD,故EF∥平面PAD

(3)解:當平面PCD與平面ABCD成45°角時,直線EF⊥面PCD

證明:GCD中點,則EGCD,由(1)知FGCD,故∠EGF為平面PCD與平面ABCD所成二面角的平面角.即∠EGF=45°,從而得∠ADP=45°,AD=AP

由Rt△PAE≌Rt△CBE,得PE=CE

FPC的中點,∴EFPC,由CDEGCDFG,得CD⊥平面EFG,CDEFEFCD,故EF⊥平面PCD.

6.(1)證明:

6ec8aac122bd4f6e

同理EFFG,∴EFGH是平行四邊形

ABCD是正三棱錐,∴A在底面上的射影O是△BCD的中心,

DOBC,∴ADBC,

HGEH,四邊形EFGH是矩形.

(2)作CPADP點,連結BP,∵ADBC,∴AD⊥面BCP

HGAD,∴HG⊥面BCPHG6ec8aac122bd4f6eEFGH.面BCP⊥面EFGH,

在Rt△APC中,∠CAP=30°,AC=a,∴AP=6ec8aac122bd4f6ea.

7.(1)證明:連結EMMF,∵ME分別是正三棱柱的棱ABAB1的中點,

BB1ME,又BB16ec8aac122bd4f6e平面EFM,∴BB1∥平面EFM.

(2)證明:取BC的中點N,連結AN由正三棱柱得:ANBC,

BFFC=1∶3,∴FBN的中點,故MFAN,

MFBC,而BCBB1BB1ME.

MEBC,由于MFME=M,∴BC⊥平面EFM

EF?平面EFM,∴BCEF.

(3)解:取B1C1的中點O,連結A1O知,A1O⊥面BCC1B1,由點OB1D的垂線OQ,垂足為Q,連結A1Q,由三垂線定理,A1QB1D,故∠A1QD為二面角A1B1DC的平面角,易得∠A1QO=arctan6ec8aac122bd4f6e.

8.(1)證明:連結A1C1、AC,ACBD交于點O,連結C1O

∵四邊形ABCD是菱形,∴ACBDBC=CD

又∵∠BCC1=∠DCC1,C1C是公共邊,∴△C1BC≌△C1DC,∴C1B=C1D

DO=OB,∴C1OBD,但ACBD,ACC1O=O

BD⊥平面AC1,又C1C6ec8aac122bd4f6e平面AC1,∴C1CBD.

 (2)解:由(1)知ACBD,C1OBD,∴∠C1OC是二面角αBDβ的平面角.

在△C1BC中,BC=2,C1C=6ec8aac122bd4f6e,∠BCC1=60°,∴C1B2=22+(6ec8aac122bd4f6e)2-2×2×6ec8aac122bd4f6e×cos60°=6ec8aac122bd4f6e.

∵∠OCB=30°,∴OB=6ec8aac122bd4f6e,BC=1,C1O=6ec8aac122bd4f6e,即C1O=C1C.

C1HOC,垂足為H,則HOC中點且OH=6ec8aac122bd4f6e,∴cosC1OC=6ec8aac122bd4f6e

(3)解:由(1)知BD⊥平面AC1,∵A1O6ec8aac122bd4f6e平面AC1,∴BDA1C,當6ec8aac122bd4f6e=1時,平行六面體的六個面是全等的菱形,同理可證BC1A1C,又∵BDBC1=B,∴A1C⊥平面C1BD.


同步練習冊答案