若存在.則求出函數(shù)的解析式. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)處切線斜率為-1.

(I)      求的解析式;

(Ⅱ)設(shè)函數(shù)的定義域為,若存在區(qū)間,使得上的值域也是,則稱區(qū)間為函數(shù)的“保值區(qū)間”

(。┳C明:當時,函數(shù)不存在“保值區(qū)間”;

(ⅱ)函數(shù)是否存在“保值區(qū)間”?若存在,寫出一個“保值區(qū)間”(不必證明);若不存在,說明理由.

 

查看答案和解析>>

 

    設(shè)二次函數(shù),函數(shù),且有

    (1)求函數(shù)的解析式;

    (2)是否存在實數(shù)k和p,使得成立,若存在,求出k和p的值;若不存在,說明理由。

 

 

 

    請考生在第22、23、24三題中任選一題作答,如果多做,則按所做的第一題記分。

 

查看答案和解析>>

已知函數(shù)處切線斜率為-1.
(I)     求的解析式;
(Ⅱ)設(shè)函數(shù)的定義域為,若存在區(qū)間,使得上的值域也是,則稱區(qū)間為函數(shù)的“保值區(qū)間”
(ⅰ)證明:當時,函數(shù)不存在“保值區(qū)間”;
(ⅱ)函數(shù)是否存在“保值區(qū)間”?若存在,寫出一個“保值區(qū)間”(不必證明);若不存在,說明理由.

查看答案和解析>>

已知函數(shù)處切線斜率為-1.

(I)求的解析式;

(Ⅱ)設(shè)函數(shù)的定義域為,若存在區(qū)間,使得上的值域也是,則稱區(qū)間為函數(shù)的“保值區(qū)間”

(ⅰ)證明:當時,函數(shù)不存在“保值區(qū)間”;

(ⅱ)函數(shù)是否存在“保值區(qū)間”?若存在,寫出一個“保值區(qū)間”(不必證明);若不

存在,說明理由.

查看答案和解析>>

函數(shù),其圖象在處的切線方程為

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)若函數(shù)的圖象與的圖象有三個不同的交點,求實數(shù)的取值范圍;

(Ⅲ)是否存在點P,使得過點P的直線若能與曲線圍成兩個封閉圖形,則這兩個封閉圖形的面積相等?若存在,求出P點的坐標;若不存在,說明理由.

 

查看答案和解析>>


同步練習冊答案