如圖.等腰梯形中..于.于...將和分別沿著和折起.使重合于一點(diǎn).與交于點(diǎn),折起之后: 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,等腰梯形ABCD中,線段Ab的中點(diǎn)O是拋物線的頂點(diǎn),DA、AB、BC分別與拋物線切于點(diǎn)M、O、N.等腰梯形的高是3,直線CD與拋物線相交于E、F兩點(diǎn),線段EF的長(zhǎng)是4.
(Ⅰ)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求拋物線的方程;
(Ⅱ)求等腰梯形ABCD的面積的最小值,并確定此時(shí)M、N的位置.

查看答案和解析>>

如圖,等腰梯形ABCD中,線段Ab的中點(diǎn)O是拋物線的頂點(diǎn),DA、AB、BC分別與拋物線切于點(diǎn)M、O、N.等腰梯形的高是3,直線CD與拋物線相交于E、F兩點(diǎn),線段EF的長(zhǎng)是4.
(Ⅰ)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求拋物線的方程;
(Ⅱ)求等腰梯形ABCD的面積的最小值,并確定此時(shí)M、N的位置.

查看答案和解析>>

如圖,等腰梯形ABCD中,線段Ab的中點(diǎn)O是拋物線的頂點(diǎn),DA、AB、BC分別與拋物線切于點(diǎn)M、O、N.等腰梯形的高是3,直線CD與拋物線相交于E、F兩點(diǎn),線段EF的長(zhǎng)是4.
(Ⅰ)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求拋物線的方程;
(Ⅱ)求等腰梯形ABCD的面積的最小值,并確定此時(shí)M、N的位置.

查看答案和解析>>

如圖,等腰梯形ABCD中,ABCD,對(duì)角線AC、BD交于點(diǎn)O,過OMNAB,交ADM,交BCN,則在以A、B、C、DM、ON,為起點(diǎn)和終點(diǎn)的向量中,相等向量有

[  ]

A1對(duì)

B2對(duì)

C3對(duì)

D4對(duì)

查看答案和解析>>

如圖,等腰梯形ABCD中,AB∥CD,對(duì)角線AC、BD交于點(diǎn)O,過O作MN∥AB,交AD于M,交BC于N,則在以A、B、C、D、M、O、N,為起點(diǎn)和終點(diǎn)的向量中,相等向量有

[  ]

A.1對(duì)
B.2對(duì)
C.3對(duì)
D.4對(duì)

查看答案和解析>>

一、            選擇題(每小題5分,共60分)

 

CADACD      CDBDBA   

二、填空題(每小題4分,共16分)

13.       14.         15.        16.

三、解答題

17.(本小題滿分12分)

解:(Ⅰ)∵

,得

兩邊平方:=,∴= ………………6分

(Ⅱ)∵

,解得,

又∵, ∴

,,

設(shè)的夾角為,則,∴

的夾角為. …………… 12分

18. (本小題滿分12分)

解:(Ⅰ)小王在一年內(nèi)領(lǐng)到駕照的概率為:

………………………( 4分)

(Ⅱ)的取值分別為1,2,3.

    ,

………………………( 8分)

所以小王參加考試次數(shù)的分布列為:

1

2

3

0.6

0.28

0.12

所以的數(shù)學(xué)期望為  ……………………12分

   

19.(本小題滿分12分)

(Ⅰ)證明:由已知得,所以,即,

,∴平面

∴平面平面.……………………………4分(文6分)

(Ⅱ)解:設(shè)的中點(diǎn)為,連接,則,

是異面直線所成的角或其補(bǔ)角

由(Ⅰ)知,在中,,,

.

所以異面直線所成的角為.…………………8分(文12分)

(Ⅲ)(解法一)由已知得四邊形是正方形,

,∴,

過點(diǎn),連接,則,

即二面角的平面角,

中,,所以,

,由余弦定理得

所以二面角的大小為.……………12分

(解法二)向量法

設(shè)的中點(diǎn),則,以為坐標(biāo)原點(diǎn),所在直線分別為軸建立空間直角坐標(biāo)系,

設(shè)平面的法向量

所以

同理得平面的法向量

,

所以所求二面角的大小為.………………12分

20.(本小題滿分12分)

解:(Ⅰ)

           當(dāng)時(shí),,∴.

           當(dāng)

                       

……………6分

(Ⅱ)當(dāng)時(shí),由(Ⅰ)的討論可知

………………12分

   

21.(本小題滿分12分)

解:(Ⅰ)∵

          ∴

,則,∴

,∴

.……………6分

     (Ⅱ)證明:

         

                       

          ∴

          又∵,∴

          ∴

          ∴.………………12分

    

22.(本小題滿分14分)

解:(Ⅰ)①當(dāng)直線軸時(shí),

,此時(shí),∴.

(不討論扣1分)

②當(dāng)直線不垂直于軸時(shí),,設(shè)雙曲線的右準(zhǔn)線為,

,作,作且交軸于

根據(jù)雙曲線第二定義有:,

到準(zhǔn)線的距離為.

,得:,

,∴,∵此時(shí),∴

綜上可知.………………………………………7分

(Ⅱ)設(shè),代入雙曲線方程得

,則,且代入上面兩式得:

 ①

     ②

由①②消去

  ③

有:,綜合③式得

,解得

的取值范圍為…………………………14分

 

 

 

 

 

 


同步練習(xí)冊(cè)答案