2.答卷前將密封線內(nèi)的項(xiàng)目填寫清楚. 查看更多

 

題目列表(包括答案和解析)

如圖,下面的表格內(nèi)的數(shù)值填寫規(guī)則如下:先將第1行的所有空格填上1;再把一個(gè)首項(xiàng)為1,公比為q的數(shù)列{an}依次填入第一列的空格內(nèi);其它空格按照“任意一格的數(shù)是它上面一格的數(shù)與它左邊一格的數(shù)之和”的規(guī)則填寫.
第1列 第2列 第3列 第n列
第1行 1 1 1 1
第2行 q
第3行 q2
第n行 qn-1
(1)設(shè)第2行的數(shù)依次為b1,b2,…,bn,試用n,q表示b1+b2+…+bn的值;
(2)設(shè)第3列的數(shù)依次為c1,c2,c3,…,cn,求證:對(duì)于任意非零實(shí)數(shù)q,c1+c3>2c2
(3)能否找到q的值,使得(2)中的數(shù)列c1,c2,c3,…,cn的前m項(xiàng)c1,c2,…,cm(m≥3)成為等比數(shù)列?若能找到,m的值有多少個(gè)?若不能找到,說明理由.

查看答案和解析>>

如圖是將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù)的一個(gè)程序框圖.
(1)將判斷框內(nèi)的條件補(bǔ)充完整;
(2)請(qǐng)用直到型循環(huán)結(jié)構(gòu)改寫流程圖.

查看答案和解析>>

組委會(huì)計(jì)劃對(duì)參加某項(xiàng)田徑比賽的12名運(yùn)動(dòng)員的血樣進(jìn)行突擊檢驗(yàn),檢查是否含有興奮劑HGH成分.采用如下檢測(cè)方法:將所有待檢運(yùn)動(dòng)員分成4個(gè)小組,每組3個(gè)人,再把每個(gè)人的血樣分成兩份,化驗(yàn)室將每個(gè)小組內(nèi)的3個(gè)人的血樣各一份混合在一起進(jìn)行化驗(yàn),若結(jié)果中不含HGH成分,那么該組的3個(gè)人只需化驗(yàn)這一次就算合格;如果結(jié)果中含HGH成分,那么需對(duì)該組進(jìn)行再次檢驗(yàn),即需要把這3個(gè)人的另一份血樣逐個(gè)進(jìn)行化驗(yàn),才能最終確定是否檢驗(yàn)合格,這時(shí),對(duì)這3個(gè)人一共進(jìn)行了4次化驗(yàn),假定對(duì)所有人來說,化驗(yàn)結(jié)果中含有HGH成分的概率均為
110

(Ⅰ)求一個(gè)小組只需經(jīng)過一次檢驗(yàn)就合格的概率;
(Ⅱ)設(shè)一個(gè)小組檢驗(yàn)次數(shù)為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望;
(Ⅲ)至少有兩個(gè)小組只需經(jīng)過一次檢驗(yàn)就合格的概率.(精確到0.01,參考數(shù)據(jù):0.2713≈0.020,0.2714≈0.005,0.7292≈0.500)

查看答案和解析>>

(2008•成都二模)(新華網(wǎng))反興奮劑的大敵、服藥者的寵兒--HGH(人體生長激素),有望在8月的北京奧運(yùn)會(huì)上首次“伏法”.據(jù)悉,國際體育界研究近10年仍不見顯著成效的HGH檢測(cè),日前已取得新的進(jìn)展,新生產(chǎn)的檢測(cè)設(shè)備有希望在北京奧運(yùn)會(huì)上使用.若組委會(huì)計(jì)劃對(duì)參加某項(xiàng)田徑比賽的120名運(yùn)動(dòng)員的血樣進(jìn)行突擊檢查,采用如下化驗(yàn)
方法:將所有待檢運(yùn)動(dòng)員分成若干小組,每組m個(gè)人,再把每個(gè)人的血樣分成兩份,化驗(yàn)時(shí)將每個(gè)小組內(nèi)的m個(gè)人的血樣各一份混合在一起進(jìn)行化驗(yàn),若結(jié)果中不含HGH成分,那么該組的m個(gè)人只需化驗(yàn)這一次就算檢驗(yàn)合格;如果結(jié)果中含有HGH成分,那么需要對(duì)該組進(jìn)行再次檢驗(yàn),即需要把這m個(gè)人的另一份血樣逐個(gè)進(jìn)行化驗(yàn),才能最終確定是否檢驗(yàn)合格,這時(shí),對(duì)這m個(gè)人一共需要進(jìn)行m+1次化驗(yàn).假定對(duì)所有人來說,化驗(yàn)結(jié)果中含有HGH成分的概率均為
110
.當(dāng)m=3時(shí),
(1)求一個(gè)小組只需經(jīng)過一次檢驗(yàn)就合格的概率;
(2)設(shè)一個(gè)小組的檢驗(yàn)次數(shù)為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

.假定平面內(nèi)的一條直線將該平面內(nèi)的一個(gè)區(qū)域分成面積相等的兩個(gè)區(qū)域,則稱這條直線平分這個(gè)區(qū)域.如圖,是平面內(nèi)的任意一個(gè)封閉區(qū)域.現(xiàn)給出如下結(jié)論:

         ① 過平面內(nèi)的任意一點(diǎn)至少存在一條直線平分區(qū)域;

         ②過平面內(nèi)的任意一點(diǎn)至多存在一條直線平分區(qū)域;

         ③ 過區(qū)域內(nèi)的任意一點(diǎn)至少存在兩條直線平分區(qū)域

④ 過區(qū)域內(nèi)的某一點(diǎn)可能存在無數(shù)條直線平分區(qū)域

         其中結(jié)論正確的是

       A.①③                              B.①④                              C.②③                              D.③④

 

查看答案和解析>>

 

一、選擇題:本大題共12個(gè)小題,每小題5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12: BC.

二、填空題:本大題共4個(gè)小題,每小題4分,共16分.

13.3; 14.-4; 15.1; 16.

三、解答題:本大題共6個(gè)小題,共74分.解答要寫出文字說明,證明過程或演算步驟.

 

17.解:(Ⅰ)∵l1∥l2,

,????????????????????????? 3分

.??????????????????????? 6分

(Ⅱ)∵,

,∴,當(dāng)且僅當(dāng)時(shí)取"=".??? 8分

,∴,???????????? 10分

,當(dāng)且僅當(dāng)時(shí)取"=".

故△ABC面積取最大值為.?????????????????????? 12分

 

18.解:(Ⅰ)ξ=3表示取出的三個(gè)球中數(shù)字最大者為3.

①三次取球均出現(xiàn)最大數(shù)字為3的概率;??????????? 1分

②三次取球中有2次出現(xiàn)最大數(shù)字3的概率;????? 3分

③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率.????? 5分

∴P(ξ=3)=P1+P2+P3=.??????????????????????? 6分

(Ⅱ)在ξ=k時(shí), 利用(Ⅰ)的原理可知:

(k=1、2、3、4).?? 8分

則ξ的概率分布列為:

ξ

1

2

3

4

P

??????????????????????????????????? 10分

∴ξ的數(shù)學(xué)期望Eξ=1×+2×+3×+4× = .????????? 12分

 

19.(Ⅰ)證明:∵四邊形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等邊三角形,設(shè)O是AA1的中點(diǎn),連接BO,則BO⊥AA1 2分

∵側(cè)面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面積為,知C到AA1的距離為,∴△AA1C1是等邊三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.??????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O(shè)為原點(diǎn),建立如圖空間直角坐標(biāo)系,則,,,.則,,,.??????????????????????????? 5分

設(shè)是平面ABC的一個(gè)法向量,

,則.設(shè)A1到平面ABC的距離為d.

.????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一個(gè)法向量是,又平面ACC1的一個(gè)法向量.    9分

.????????????????? 11分

∴二面角B-AC-C1的余弦值是.??????????????????? 12分

 

20.解:(Ⅰ),對(duì)稱軸方程為,故函數(shù)在[0,1]上為增函數(shù),∴.???????????????????????? 2分

當(dāng)時(shí),.?????????????????????????? 3分

            ①

       ②

②-①得,即,?????????????? 4分

,∴數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.

,∴.?????????????? 6分

(Ⅱ)∵,∴

???????????????? 7分

可知:當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),

????????????????????? 10分

可知存在正整數(shù)或6,使得對(duì)于任意的正整數(shù)n,都有成立.??? 12分

 

21.解:(Ⅰ)設(shè),,

,,,

,,

.∵

,∴,∴.?????????????????? 2分

則N(c,0),M(0,c),所以,

,則,

∴橢圓的方程為.?????????????????????? 4分

(Ⅱ)∵圓O與直線l相切,則,即,????????? 5分

消去y得

∵直線l與橢圓交于兩個(gè)不同點(diǎn),設(shè),

,

,?????????????????? 7分

,,.????? 8分

.??????????? 9分

(或).

設(shè),則,,,

,則,

時(shí)單調(diào)遞增,????????????????????? 11分

∴S關(guān)于μ在區(qū)間單調(diào)遞增,,,

.???????????????????????????? 12分

(或,

∴S關(guān)于u在區(qū)間單調(diào)遞增,???????????????????? 11分

,,.)???????????????? 12分

 

22.解:(Ⅰ)因?yàn)?sub>,則,   1分

當(dāng)時(shí),;當(dāng)時(shí),

上單調(diào)遞增;在上單調(diào)遞減,

∴函數(shù)處取得極大值.???????????????????? 2分

∵函數(shù)在區(qū)間(其中)上存在極值,

解得.??????????????????????? 3分

(Ⅱ)不等式,即為,???????????? 4分

,∴,?? 5分

,則,∵,∴,上遞增,

,從而,故上也單調(diào)遞增,

.??????????????????????????????? 7分

(Ⅲ)由(Ⅱ)知:恒成立,即,??? 8分

,??????????????? 9分

,

………

,??????????????????????? 10分

疊加得:

.???????????????????? 12分

,

.???????????????????? 14


同步練習(xí)冊(cè)答案