(I)證明: 是函數(shù)在區(qū)間上遞減的必要而不充分的條件, 查看更多

 

題目列表(包括答案和解析)

設(shè)f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0,x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱f(x)為[0,1]上的單峰函數(shù),x*為峰點,包含峰點的區(qū)間為含峰區(qū)間.對任意的[0,1]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長度的方法.

  (I)證明:對任意的∈(O,1),,若f()≥f(),則(0,)為含峰區(qū)間:若f()f(),則為含峰區(qū)間:

  (II)對給定的r(0<r<0.5),證明:存在∈(0,1),滿足,使得由(I)所確定的含峰區(qū)間的長度不大于0.5+r:

  (III)選取∈(O,1),,由(I)可確定含峰區(qū)間為,在所得的含峰區(qū)間內(nèi)選取,由類似地可確定一個新的含峰區(qū)間,在第一次確定的含峰區(qū)間為(0,)的情況下,試確定的值,滿足兩兩之差的絕對值不小于0.02,且使得新的含峰區(qū)間的長度縮短到0. 34(區(qū)間長度等于區(qū)間的右端點與左端點之差)

 

查看答案和解析>>

設(shè)f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0,x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱f(x)為[0,1]上的單峰函數(shù),x*為峰點,包含峰點的區(qū)間為含峰區(qū)間.對任意的[0,1]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長度的方法.
(I)證明:對任意的∈(O,1),,若f()≥f(),則(0,)為含峰區(qū)間:若f()f(),則為含峰區(qū)間:
(II)對給定的r(0<r<0.5),證明:存在∈(0,1),滿足,使得由(I)所確定的含峰區(qū)間的長度不大于0.5+r:
(III)選取∈(O,1),,由(I)可確定含峰區(qū)間為,在所得的含峰區(qū)間內(nèi)選取,由類似地可確定一個新的含峰區(qū)間,在第一次確定的含峰區(qū)間為(0,)的情況下,試確定的值,滿足兩兩之差的絕對值不小于0.02,且使得新的含峰區(qū)間的長度縮短到0. 34(區(qū)間長度等于區(qū)間的右端點與左端點之差)

查看答案和解析>>

設(shè)函數(shù)f(x)=x(x-a)2
(I)證明:a<3是函數(shù)f(x)在區(qū)間(1,2)上遞減的必要而不充分的條件;
(II)若x∈[0,|a|+1]時,f(x)<2a2恒成立,且f(0)=0,求實數(shù)a的取值范圍.

查看答案和解析>>

設(shè)函數(shù)f(x)=x(x-a)2
(I)證明:a<3是函數(shù)f(x)在區(qū)間(1,2)上遞減的必要而不充分的條件;
(II)若x∈[0,|a|+1]時,f(x)<2a2恒成立,且f(0)=0,求實數(shù)a的取值范圍.

查看答案和解析>>

設(shè)函數(shù)f(x)=x(x-a)2,
(I)證明:a<3是函數(shù)f(x)在區(qū)間(1,2)上遞減的必要而不充分的條件;
(II)若x∈[0,|a|+1]時,f(x)<2a2恒成立,且f(0)=0,求實數(shù)a的取值范圍.

查看答案和解析>>

一.             選擇題(每小題5分)

題號

1

2

3

4

5

6

7

8

9

10

答案

A

B

D

C

D

B

C

B

C

A

 

二.             填空題(每小題5分)

11.       12。     13。-1       14。       15。

三.             解答題

……………2分

且2R=,由正弦定理得:

化簡得:                       ……………4分

由余弦定理:

……………11分

所以,……………12分

17.解:(I)記事件A=“該單位所派的選手都是男職工” ……………1分

則P(A)=         ……………3分

(II)記事件B=“該單位男職工、女職工選手參加比賽” ……………4分

則P(B)=……………7分

(III)設(shè)該單位至少有一名選手獲獎的概率為P,則

……………12分

18.(解法一)(I)取AB的中點為Q,連接PQ,則,所以,為AC與BD所成角……………2分

      

又CD=BD=1,,而PQ=1,DQ=1

……………4分

 

(II)過D作,連接CR,

……………6分

,

……………8分

……………9分

(解法二)(I)如圖,以D為坐標(biāo)原點,DB、AD、DC所在直線分別為x,y,z軸建立直角坐標(biāo)系。則A(),C(0,0,1),B(1,0,0),P(),D(0,0,0)

 

,……2分

所以,異面直線AC與BD所成角的余弦值為……………4分

(II)面DAB的一個法向量為………5分

設(shè)面ABC的一個法向量,則

,取,……………7分

……………8分

…………9分

(III)不存在。若存在S使得AC,則,與(I)矛盾。故不存在…12分

19.解:(I)在區(qū)間上遞減,其導(dǎo)函數(shù)……………1分

……………4分

是函數(shù)在區(qū)間上遞減的必要而不充分的條件……………5分

(II)

      ……………6分

當(dāng)a>0時,函數(shù)在()上遞增,在上遞減,在上遞增,故有

……………9分

當(dāng)a〈0時,函數(shù)上遞增,只要

,則…………11分

所以上遞增,又

不能恒成立。

故所求的a的取值范圍為……………12分

20.解:(I)由條件,M到F(1,0)的距離等于到直線 x= -1的距離,所以,曲線C是以F為焦點、直線 x= -1為準(zhǔn)線的拋物線,其方程為……………3分

(II)設(shè),代入得:……………5分

由韋達定理

……………6分

,只要將A點坐標(biāo)中的換成,得……7分

 

……………8分

所以,最小時,弦PQ、RS所在直線的方程為

……………9分

(III),即A、T、B三點共線。

是否存在一定點T,使得,即探求直線AB是否過定點。

由(II)知,直線AB的方程為………10分

,直線AB過定點(3,0).……………12分

故存在一定點T(3,0),使得……………13分

21.解:(I)因為曲線在處的切線與平行

……………4分

   , 

(III)。由(II)知:=

,從而……………11分

 


同步練習(xí)冊答案