20. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)有一問題,在半小時內(nèi),甲能解決它的概率是0.5,乙能解決它的概率是,

 如果兩人都試圖獨立地在半小時內(nèi)解決它,計算:w.w.w.k.s.5.u.c.o.m      

   (1)兩人都未解決的概率;

   (2)問題得到解決的概率。

查看答案和解析>>

(本小題滿分13分)  已知是等比數(shù)列, ;是等差數(shù)列, , .

(1) 求數(shù)列、的通項公式;

(2) 設(shè)+…+,,其中,…試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

(本小題滿分13分) 現(xiàn)有一批貨物由海上從A地運往B地,已知貨船的最大航行速度為35海里/小時,A地至B地之間的航行距離約為500海里,每小時的運輸成本由燃料費和其余費用組成,輪船每小時的燃料費用與輪船速度的平方成正比(比例系數(shù)為0.6),其余費用為每小時960元.

(1)把全程運輸成本y(元)表示為速度x(海里/小時)的函數(shù);

(2)為了使全程運輸成本最小,輪船應(yīng)以多大速度行駛?

查看答案和解析>>

(本小題滿分13分)

如圖,ABCD的邊長為2的正方形,直線l與平面ABCD平行,g和F式l上的兩個不同點,且EA=ED,F(xiàn)B=FC, 是平面ABCD內(nèi)的兩點,都與平面ABCD垂直,

(Ⅰ)證明:直線垂直且平分線段AD:w.w.w.k.s.5.u.c.o.m       

(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面

體ABCDEF的體積。

 

查看答案和解析>>

(本小題滿分13分)兩個人射擊,甲射擊一次中靶概率是p1,乙射擊一次中靶概率是p2,已知 , 是方程x2-5x + 6 = 0的根,若兩人各射擊5次,甲的方差是 .(1) 求 p1、p2的值;(2) 兩人各射擊2次,中靶至少3次就算完成目的,則完成目的的概率是多少?(3) 兩人各射擊一次,中靶至少一次就算完成目的,則完成目的的概率是多少?

查看答案和解析>>

一.             選擇題(每小題5分)

題號

1

2

3

4

5

6

7

8

9

10

答案

A

B

D

C

D

B

C

B

C

A

 

二.             填空題(每小題5分)

11.       12。     13。-1       14。       15。

三.             解答題

……………2分

且2R=,由正弦定理得:

化簡得:                       ……………4分

由余弦定理:

……………11分

所以,……………12分

17.解:(I)記事件A=“該單位所派的選手都是男職工” ……………1分

則P(A)=         ……………3分

(II)記事件B=“該單位男職工、女職工選手參加比賽” ……………4分

則P(B)=……………7分

(III)設(shè)該單位至少有一名選手獲獎的概率為P,則

……………12分

18.(解法一)(I)取AB的中點為Q,連接PQ,則,所以,為AC與BD所成角……………2分

      

又CD=BD=1,,而PQ=1,DQ=1

……………4分

 

(II)過D作,連接CR,,

……………6分

……………8分

……………9分

(解法二)(I)如圖,以D為坐標原點,DB、AD、DC所在直線分別為x,y,z軸建立直角坐標系。則A(),C(0,0,1),B(1,0,0),P(),D(0,0,0)

 

,……2分

所以,異面直線AC與BD所成角的余弦值為……………4分

(II)面DAB的一個法向量為………5分

設(shè)面ABC的一個法向量,則

,取,……………7分

……………8分

…………9分

(III)不存在。若存在S使得AC,則,與(I)矛盾。故不存在…12分

19.解:(I)在區(qū)間上遞減,其導(dǎo)函數(shù)……………1分

……………4分

是函數(shù)在區(qū)間上遞減的必要而不充分的條件……………5分

(II)

      ……………6分

當a>0時,函數(shù)在()上遞增,在上遞減,在上遞增,故有

……………9分

當a〈0時,函數(shù)上遞增,只要

,則…………11分

所以上遞增,又

不能恒成立。

故所求的a的取值范圍為……………12分

20.解:(I)由條件,M到F(1,0)的距離等于到直線 x= -1的距離,所以,曲線C是以F為焦點、直線 x= -1為準線的拋物線,其方程為……………3分

(II)設(shè),代入得:……………5分

由韋達定理

,

……………6分

,只要將A點坐標中的換成,得……7分

 

……………8分

所以,最小時,弦PQ、RS所在直線的方程為

……………9分

(III),即A、T、B三點共線。

是否存在一定點T,使得,即探求直線AB是否過定點。

由(II)知,直線AB的方程為………10分

,直線AB過定點(3,0).……………12分

故存在一定點T(3,0),使得……………13分

21.解:(I)因為曲線在處的切線與平行

……………4分

   , 

(III)。由(II)知:=

,從而……………11分

,

 


同步練習(xí)冊答案