題目列表(包括答案和解析)
(A) (B) (C) (D)
(A) (B) (C) (D)
(A) (B) (C) (D)
(A)(B)(C) (D)
(A) (B) (C) (D)
1―10.CAACB CCCDB,11.(1,1),12.(-2,3),13.5,14.D=E,15.m>-1/2
16.因為x2-y2=0表示過原點的兩條互相垂直的直線:y=x,y=-x,(x-a)2+y2=1表示圓心為C(a,0),半徑為1的動圓,本題討論方程組有實數(shù)解的問題即討論圓與直線有公共點的問題。(1)-≤a≤;(2)當-<a<-1或-1<a<1或1<a<時有四組實數(shù)解,當a=±1時,有三組實數(shù)解,當a=±時,有兩組實數(shù)解,當a<-或a>時無實數(shù)解。
17.以直線AB為x軸,線段AB的垂直平分線為y軸建立直角坐標系。設A(-5,0),則B(5,0),在平面內任取一點P(x,y),設從A運貨物到P的運費為
即P點在圓C
的內部.換言之,圓C內部的居民應在A地購買,同理可推得圓C外部的應在B地購物,圓C上的居民可隨意選擇A、B兩地之一購物。
18.嘗試使用對稱法,如圖作A點關于y軸
的對稱點A1,再作A點關于y=x的對稱點A2,
在y軸和y=x上公別取點B、 C,則|BA|=|BA1|,
|AC|=|A
|AB|+|BC|+|CA|=|A1B|+|BC|+|CA2|,
從而將問題轉化為在y軸,y=x上各取一點,使
折線A1BCA2的長度最小。B(0,-17/5)和C(-17/8,-17/8)
19.(1)配方得圓心,將心坐標消去m可得直線a:x-3y-3=0
(2)設與直線a平行的直線c:x-3y+b=0(b≠-3),則圓心到直線a的距離為
,∵圓的半徑r=5,∴當d<r時,直線與圓相交,當d=r時,直線與圓相切,當d>r時直線與圓相離。(3)對于任一條平行于a且與圓相交的直線的直線c,由于圓心到直線c的距離都與m無關,所以弦長與m無關。
20.△ABC為直角三角形,如國圖建立直角坐標系,
則A(0,0)、B(4,0)、C(0,3),設內切圓半徑
為r,則r=1/2(|OC|+|OB|-|BC|)=1,故內切圓方程為
(x-1)2+(y-1)2=1,可設P點坐標(1+Cosα,1+Sinα)
則以PA、PB、PC為直徑的三個圓面積之和S=(10-Cosα)
當Cosα=-1時,Smax=5.5π,
當Cosα=1時, Smin=4.5π.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com