因此.當(dāng)?shù)拈L為時.二面角的大小為. -------12分 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是邊長為1的正方形,側(cè)棱AA1=2.
(Ⅰ)求三棱錐C-A1B1C1的體積V;
(Ⅱ)求直線BD1與平面ADB1所成角的正弦值;
(Ⅲ)若棱AA1上存在一點P,使得
AP
PA1
,
當(dāng)二面角A-B1C1-P的大小為30°時,求實數(shù)λ的值.

查看答案和解析>>

如圖多面體,它的正視圖為直角三角形,側(cè)視圖為矩形,俯視圖為直角梯形(尺寸如圖所示).
(Ⅰ)求證:AE∥平面DCF;
(Ⅱ)當(dāng)AB的長為何值時,二面角A-EF-C的大小為60°?

查看答案和解析>>

精英家教網(wǎng)如圖1,在平面內(nèi),ABCD是∠BAD=60°,且AB=a的菱形,ADD′′A1和CD D′C1都是正方形.將兩個正方形分別沿AD,CD折起,使D′′與D′重合于點D1.設(shè)直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè)(圖2).
(Ⅰ) 設(shè)二面角E-AC-D1的大小為θ,若
π
4
≤θ≤
π
3
,求線段BE長的取值范圍;
(Ⅱ)在線段D1E上存在點P,使平面PA1C1∥平面EAC,求
D1P
PE
與BE之間滿足的關(guān)系式,并證明:當(dāng)0<BE<a時,恒有
D1P
PE
<1.

查看答案和解析>>

(2013•鄭州二模)如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,
CD
CC1
.(λ∈R)
(Ⅰ)當(dāng)λ=
1
2
時,求證AB1⊥平面A1BD;
(Ⅱ)當(dāng)二面角A-A1D-B的大小為
π
3
時,求實數(shù)λ的值.

查看答案和解析>>

精英家教網(wǎng)如圖,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是邊長為1的正方形,側(cè)棱A1A=2,
(Ⅰ)證明:AC⊥A1B;
(Ⅱ)若棱AA1上存在一點P,使得
AP
PA1
,當(dāng)二面角A-B1C1-P的大小為300時,求實數(shù)λ的值.

查看答案和解析>>


同步練習(xí)冊答案