已知向量.與的夾角為.則直線 查看更多

 

題目列表(包括答案和解析)

已知向量的夾角為,則直線與圓的位置關(guān)系是

A.相交但不過(guò)圓心       B.相交過(guò)圓心       C.相切        D.相離

查看答案和解析>>

已知向量的夾角為120°,則直線2xcosα-2ysinα+1=0與圓(x-cosβ)2+(y+sinβ)2=1的位置關(guān)系是

[  ]

A.相交且不過(guò)圓心

B.相交且過(guò)圓心

C.相切

D.相離

查看答案和解析>>

已知向量,,且直線與圓相切,則向量的夾角為_(kāi)_____.

 

查看答案和解析>>

已知向量,其夾角為,則直線

=0與圓的位置關(guān)系是_____    ___。

 

 

查看答案和解析>>

已知向量,若的夾角為,則直線與圓的位置關(guān)系是(   )

 

(A)相交      (B)  相切       (C)相離      (D)隨的值而定

 

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

B

A

C

B

C

B

C

C

A

A

D

二、填空題:本大題共4小題,每小題4分,共16分

13、。1    14、   24/5   15、 16/3     16、 

解:由 得 P ( 1,-1)

   據(jù)題意,直線l與直線垂直,故l斜率

   ∴ 直線l方程為   即 .      

解:連結(jié)PO,得

當(dāng)PO通過(guò)圓心時(shí)有最大值和最小值

解:設(shè)生產(chǎn)甲、乙兩種肥料各車皮,利潤(rùn)總額為元,那么

畫(huà)圖得當(dāng)時(shí)總額的最大值為30000

解:(1)

(2)或0

解:(1)設(shè)A(x1,y1),B(x2,y2),AB的方程為y-1=k(x-2) 即y=kx+1-2k①

  ∵離心率e=∴橢圓方程可化為

將①代入②得(1+2k2)x2+4(1-2k)?kx+2(1-2k)2-2b2=0

∵x1+x2=    ∴k=-1

∴x1x2=  又  ∴

   ∴b2=8     ∴

(2)設(shè)(不妨設(shè)m<n)則由第二定義知

    或

        

 

解:由已知得 A (-1, 0 )、B ( 1, 0 ),

   設(shè) P ( x, y ),  C ( x0, y0 ) ,  則 D (x0, -y0 ),

   由A、C、P三點(diǎn)共線得                    ①

   由D、B、P三點(diǎn)共線得                    ②

①×② 得                              ③

又 x02 + y02 = 1,   ∴ y02 = 1-x02   代入③得  x2-y2 = 1,

即點(diǎn)P在雙曲線x2-y2 = 1上, 故由雙曲線定義知,存在兩個(gè)定點(diǎn)E (-, 0 )、

F (, 0 )(即此雙曲線的焦點(diǎn)),使 | | PE |-| PF | | = 2  (即此雙曲線的實(shí)軸長(zhǎng)) 為定值.

 

 


同步練習(xí)冊(cè)答案