(2)設是橢圓上的一點.過點的直線交軸于點.交軸于點.若.求直線的斜率. 查看更多

 

題目列表(包括答案和解析)

已知橢圓上的一動點P到右焦點的最短距離為,且右焦點到右準線的距離等于短半軸的長.

(1)求橢圓C的方程;

(2)設P(4,0),A,B是橢圓C上關于x軸對稱的任意兩個不同的點,連結PB交橢圓C于另一點E,證明直線AE與x軸相交于定點Q;

(3)在(2)的條件下,過點Q的直線與橢圓C交于M,N兩點,求·的取值

范圍.

查看答案和解析>>

橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點為F1(-c,0),F(xiàn)2(c,0),M是橢圓上的一點,且滿足
F1M
F2M
=0

(1)求離心率的取值范圍;
(2)當離心率e取得最小值時,點N(0,3)到橢圓上的點的最遠距離為5
2
;
①求此時橢圓G的方程;
②設斜率為k(k≠0)的直線L與橢圓G相交于不同的兩點A、B,Q為AB的中點,問A、B兩點能否關于過點P(0,-
3
3
)
、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點分別為F1(-c,0),F(xiàn)2(c,0),M是橢圓短軸的一個端點,且滿足
F1M
F2M
=0,點N( 0,3 )到橢圓上的點的最遠距離為5
2

(1)求橢圓C的方程
(2)設斜率為k(k≠0)的直線l與橢圓C相交于不同的兩點A、B,Q為AB的中點,P(0,-
3
3
)
;問A、B兩點能否關于過點P、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

直線l過x軸上的點M,l交橢圓
x2
8
+
y2
4
=1
于A,B兩點,O是坐標原點.
(1)若M的坐標為(2,0),當OA⊥OB時,求直線l的方程;
(2)若M的坐標為(1,0),設直線l的斜率為k(k≠0),是否存直線l,使得l垂直平分橢圓的一條弦?如果存在,求k的取值范圍;如果不存在,說明理由.

查看答案和解析>>

已知是橢圓上一點,且點到橢圓的兩個焦點距離之和為;

(1)求橢圓方程;

(2)設為橢圓的左頂點,直線軸于點,過作斜率為的直線交橢圓于

兩點,若,求實數(shù)的值.

 

查看答案和解析>>

 

一、選擇題:1-5  BABAC       6-10  DAACC

二、填空題:11.625     12.     13.

14.     15.    

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題滿分12分)

解:(1)由題意知

 

的夾角           

(2)

   

有最小值

的最小值是

 

17.(本小題滿分12分)

(1)證法一:在中,是等腰直角的中位線,                                       

在四棱錐中,,, 平面,                         

平面,                                            

證法二:同證法一      平面,                                                   

平面                                 

(2)在直角梯形中,,                     

垂直平分,                      

                              

三棱錐的體積為  

 

18.(本小題滿分14分)

解:,   

因為函數(shù)處的切線斜率為-3,

所以,即

(1)函數(shù)時有極值,所以

解得

所以

(2)因為函數(shù)在區(qū)間上單調遞增,所以導函數(shù)

在區(qū)間上的值恒大于或等于零

,所以實數(shù)的取值范圍為

 

19.(本小題滿分14分)

解:(1)由題設知

由于,則有,所以點的坐標為

所在直線方程為

所以坐標原點到直線的距離為

,所以  解得:

所求橢圓的方程為

(2)由題意可知直線的斜率存在,設直線斜率為

直線的方程為,則有

,由于、三點共線,且

根據(jù)題意得,解得

在橢圓上,故

解得,綜上,直線的斜率為

 

 

20.(本小題滿分14分)

解: 在實施規(guī)劃前, 由題設(萬元),

知每年只須投入40萬, 即可獲得最大利潤100萬元.

則10年的總利潤為W1=100×10=1000(萬元).

實施規(guī)劃后的前5年中, 由題設知,

每年投入30萬元時, 有最大利潤(萬元).

所以前5年的利潤和為(萬元). 

設在公路通車的后5年中, 每年用x萬元投資于本地的銷售, 而用剩下的(60-x)萬元于外地區(qū)的銷售投資, 則其總利潤為:

.

當x=30時,W2|max=4950(萬元).

從而 ,   該規(guī)劃方案有極大實施價值.

 

21.(本小題滿分14分)

解:(1)設

,又

(2)由已知得

兩式相減得,

.若

(3)由,

.

可知,.

 

 


同步練習冊答案