5.以橢圓的焦點(diǎn)為頂點(diǎn).并以該橢圓的相應(yīng)的頂點(diǎn)為焦點(diǎn)的雙曲線的方程為 查看更多

 

題目列表(包括答案和解析)

橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,該橢圓經(jīng)過點(diǎn)P(1,
3
2
)
且離心率為
1
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l:y=kx+m與橢圓C相交A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn),求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn)分別為F1、F2,右頂點(diǎn)為A,P為橢圓C上任意一點(diǎn).已知
PF1
PF2
的最大值為3,最小值為2.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m與橢圓C相交于M、N兩點(diǎn)(M、N不是左右頂點(diǎn)),且以MN為直徑的圓過點(diǎn)A.求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

橢圓)的左、右焦點(diǎn)分別為、,右頂點(diǎn)為,為橢圓上任意一點(diǎn).已知的最大值為3,最小值為2.

   (1)求橢圓的方程;

   (2)若直線與橢圓相交于、兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過點(diǎn).求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

 

查看答案和解析>>

橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2) 若直線與橢圓相交于兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn),求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2) 若直線與橢圓相交于兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn),求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

一、選擇題

1―5  BCAAB;6-10  BCACD ;11-12  DA

二、填空題

13、2   14、9   15、   16、②

三、解答題

17.解:

(Ⅰ)由,得,

,得.??????????????????????????????????????????????????????????????????????????????????????? 2分

所以.??????????????????????????????????????????? 5分

(Ⅱ)由正弦定理得.?????????????????????????????????????????????????? 8分

所以的面積.????????????????????????? 10分

18.解:

(1)       ,  

又橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,

橢圓的方程為:

(2)由,

19.解:

(1)連結(jié),則

(2)證明:連結(jié)、,則,PQ∥平面AA1B1B.

20.解:

設(shè)數(shù)列的公差為,則

,

,

.????????????????????????????????????????????????????????????????????????????????????????????? 3分

成等比數(shù)列得,

整理得,

解得.???????????????????????????????????????????????????????????????????????????????????????????????????? 7分

當(dāng)時(shí),.????????????????????????????????????????????????????????????????????????????????? 9分

當(dāng)時(shí),,

于是.????????????????????????????????????????????????????? 12分

21.解:

(1)函數(shù)的圖像經(jīng)過點(diǎn)

  

(2)函數(shù)為

   

當(dāng)時(shí),,函數(shù)

函數(shù)為的定義域?yàn)椋?sub>;值域?yàn)椋?sub>

(3)函數(shù)的反函數(shù)為

    不等式

      不等式的解集為

22.證明:

(1)PA⊥底面ABCD  

∠BAD=90° 

平面

是斜線在平面內(nèi)的射影

 AE⊥PD       BE⊥PD

(2)連結(jié)

PA⊥底面ABCD   是斜線在平面內(nèi)的射影

     

(3)過點(diǎn)作,連結(jié),則(或其補(bǔ)角)為異面直線AE與CD所成的角。由(2)知      平面

    平面      

  

  異面直線AE與CD所成的角為

 


同步練習(xí)冊答案