小題4分.第小題5分)已知:點列()在直線L:上.為L與軸的交點.數(shù)列為公差為1的等差數(shù)列.. 查看更多

 

題目列表(包括答案和解析)

(本題16分,第(1)小題4分;第(2)小題6分;第(3)小題6分)

  已知數(shù)列滿足:,),數(shù)列),

數(shù)列).

(1)證明數(shù)列是等比數(shù)列;

(2)求數(shù)列的通項公式;

(3)是否存在數(shù)列的不同項),使之成為等差數(shù)列?若存在請求出這樣的

不同項);若不存在,請說明理由.

查看答案和解析>>

(本題滿分16分,第(1)小題4分,第(2)小題8分,第(3)小題4分)

已知橢圓的左右焦點分別為,短軸兩個端點為,且四邊形是邊長為2的正方形。

(1)求橢圓方程;

(2)若分別是橢圓長軸的左右端點,動點滿足,連接,交橢圓于。證明:為定值;

(3)在(2)的條件下,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線的交點,若存在,求出點的坐標;若不存在,請說明理由。

查看答案和解析>>

(本題滿分16分,第(1)小題4分,第(2)小題6分,第(2)小題6分)

在平行四邊形中,已知過點的直線與線段分別相交于點。若。

(1)求證:的關系為;

(2)設,定義在上的偶函數(shù),當,且函數(shù)圖象關于直線對稱,求證:,并求時的解析式;

(3)在(2)的條件下,不等式上恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

(本題滿分16分,第1小題4分,第2小題6分,第3小題6分)

設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1、F2,線段OF1、OF2的中點分別為B1B2,且△AB1B2是面積為的直角三角形.過1作直線l交橢圓于PQ兩點.

(1) 求該橢圓的標準方程;

(2) 若,求直線l的方程;

(3) 設直線l與圓Ox2+y2=8相交于M、N兩點,令|MN|的長度為t,若t,求△B2PQ的面積的取值范圍.

 

查看答案和解析>>

(本題滿分16分,第(1)小題4分,第(2)小題8分,第(3)小題4分)

已知橢圓的左右焦點分別為,短軸兩個端點為,且四邊形是邊長為2的正方形。

(1)求橢圓方程;

(2)若分別是橢圓長軸的左右端點,動點滿足,連接,交橢圓于點。證明:為定值;

(3)在(2)的條件下,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線的交點,若存在,求出點的坐標;若不存在,請說明理由。

 

 

查看答案和解析>>

 

一、填空題(每題5分)

1)  2)  3)0  4)  5)   6) ②④  7)  8)  9)  10)  11)

二、選擇題  (每題5分)

12、A  13、B   14、B   15、D

三、解答題

16、

(1)因為,所以∠BCA(或其補角)即為異面直線所成角         -------(3分)

∠ABC=90°, AB=BC=1,所以,     -------(2分)

即異面直線所成角大小為。      -------(1分)

(2)直三棱柱ABC-A1B1C1中,,所以即為直線A1C與平面ABC所成角,所以。            -------(2分)

中,AB=BC=1得到,中,得到,    -------(2分)

 

所以               -------(2分)

17、(10=       -------(1分)

=       -------(1分)

=           -------(1分)

周期;                 -------(1分)

,解得單調遞增區(qū)間為    -------(2分)

(2),所以

,

所以的值域為,                           -------(4分)

,所以,即       -------(4分)

 

18、,顧客得到的優(yōu)惠率是。         -------(5分)

(2)、設商品的標價為x元,則500≤x≤800                         ------(2分)

消費金額:  400≤0.8x≤640

由題意可得:

1       無解                                 ------(3分)

或(2        得:625≤x≤750                    ------(3分)

 

因此,當顧客購買標價在元內的商品時,可得到不小于的優(yōu)惠率。------(1分)

 

19、(1)軸的交點,              ------(1分)

;所以,即,-                 ----(1分)

因為上,所以,即    ----(2分)

(2)若 ),

即若 )         ----(1分)

(A)當時,

                                                     ----(1分)

==,而,所以              ----(1分)

(B)當時,   ----(1分)

= =,                        ----(1分)

,所以                                       ----(1分)

因此)                              ----(1分)

(3)假設存在使得成立。

(A)若為奇數(shù),則為偶數(shù)。所以,而,所以,方程無解,此時不存在。      ----(2分)

(B) 若為偶數(shù),則為奇數(shù)。所以,,而,所以,解得                    ----(2分)

由(A)(B)得存在使得成立。                   ----(1分)

 

20、(1)(A):點P與點F(2,0)的距離比它到直線+4=0的距離小2,所以點P與點F(2,0)的距離與它到直線+2=0的距離相等。                ----(1分)

由拋物線定義得:點在以為焦點直線+2=0為準線的拋物線上,              ----(1分)

拋物線方程為。                             ----(2分) 

解法(B):設動點,則。當時,,化簡得:,顯然,而,此時曲線不存在。當時,,化簡得:。

 

(2)

,

,               ----(1分)

,

,即,,           ----(2分)

直線為,所以                      ----(1分)

                         ----(1分)

由(a)(b)得:直線恒過定點。                        ----(1分)

 


同步練習冊答案