2.由矩陣A屬于特征值6的一個(gè)特征向量為α1=可得. =6.即c+d=6,-------------------------------2分由矩陣A屬于特征值1的一個(gè)特征向量為α2=.可得 =.即3c-2d=-2.-----------------------------4分解得即A=.-----------------------6分A的逆矩陣是.-------------------------8分 查看更多

 

題目列表(包括答案和解析)

已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個(gè)特征向量為α1=
1
1
,屬于特征值1的一個(gè)特征向量為α2=
3
-2

(1)求矩陣A;
(2)判斷矩陣A是否可逆,若可逆求出其逆矩陣.

查看答案和解析>>

已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個(gè)特征向量為
α1
=
1
1
,屬于特征值1的一個(gè)特征向量
α2
=
3
-2

(Ⅰ)求矩陣A的逆矩陣;
(Ⅱ)計(jì)算A3
-1
4
的值.

查看答案和解析>>

(選修4-2:矩陣與變換)
已知矩陣A=
.
33
cd
.
,若矩陣A屬于特征值6的一個(gè)特征向量為
α1
=
.
1
1
.
,屬于特征值1的一個(gè)特征向量為
α2
=
.
3
-2
.
.求矩陣A,并寫出A的逆矩陣.

查看答案和解析>>

已知矩陣A=
33
cd
.若矩陣A屬于特征值6的一個(gè)特征向量為α1=
1
1
,屬于特征值1的一個(gè)特征向量為α2=
3
-2
,矩陣A=
33
24
33
24

查看答案和解析>>

選修4-2:矩陣與變換
已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個(gè)特征向量為
α1
=
1
1
,屬于特征值1的一個(gè)特征向量為
α2
=
3
-2
.求矩陣A的逆矩陣.

查看答案和解析>>


同步練習(xí)冊(cè)答案