題目列表(包括答案和解析)
(本小題滿分10分)從參加環(huán)保知識競賽的學(xué)生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下,觀察圖形,回答下列問題.
(I)在79.5~89.5之間的頻率、頻數(shù)分別是多少?
(Ⅱ)估計這次環(huán)保知識競賽的及格率(60分及以上為及格).
(本小題滿分10分)選修4-4坐標系與參數(shù)方程
在平面直角坐標系中,取原點為極點,x軸正半軸為極軸建立極坐標系,已知曲線C1的極坐標方程為,直線C2的參數(shù)方程為:(t為參數(shù))
(I )求曲線C1的直角坐標方程,曲線C2的普通方程.
(II)先將曲線C1上所有的點向左平移1個單位長度,再把圖象上所有點的橫坐標伸長到原來的倍得到曲線C3 P為曲線C3上一動點,求點P到直線C2距離的最小值,并求出相應(yīng)的P點的坐標.
(本小題滿分10分)已知直線l的方程為3x+4y-12="0," 求直線m的方程, 使得:
(1)m與l平行, 且過點(-1,3) ;
(2) m與l垂直, 且m與兩軸圍成的三角形面積為4.
(本小題滿分10分)選修4—4;坐標系與參數(shù)方程.
已知直線為參數(shù)), 曲線 (為參數(shù)).
(Ⅰ)設(shè)與相交于兩點,求;
(Ⅱ)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設(shè)點是曲線上的一個動點,求它到直線的距離的最小值.
本小題滿分10分)
已知直線l經(jīng)過點P(,1),傾斜角,在極坐標系下,圓C的極坐標方程為。
(1)寫出直線l的參數(shù)方程,并把圓C的方程化為直角坐標方程;
(2)設(shè)l與圓C相交于A,B兩點,求點P到A,B兩點的距離之積。
第Ⅰ卷
一、填空題:
1. {1,2,3}; 2.充分非必要;3.; 4.; 5. 8; 6. (歷史) 5049; (物理) ; 7. 1; 8.
9.;10.; 11.; 12.;13.;14. 4.
二、解答題:
15. 解:(1)因為,所以…………(3分)
得 (用輔助角得到同樣給分) ………(5分)
又,所以= ……………………………………(7分)
(2)因為 ………………………(9分)
= …………………………………………(11分)
所以當=時, 的最大值為5+4=9 …………………(13分)
故的最大值為3 ………………………………………(14分)
16. (選歷史方向) 解: (1)表格為:
高 個
非高個
合 計
大 腳
5
2
7
非大腳
1
13
合 計
6
14
…… (3分)
(說明:黑框內(nèi)的三個數(shù)據(jù)每個1分,黑框外合計數(shù)據(jù)有錯誤的暫不扣分)
(2)提出假設(shè)H0: 人的腳的大小與身高之間沒有關(guān)系. …………………………… (4分)
根據(jù)上述列聯(lián)表可以求得.…………………… (7分)
當H0成立時,的概率約為0.005,而這里8.802>7.879,
所以我們有99.5%的把握認為: 人的腳的大小與身高之間有關(guān)系. ……………… (8分)
(3) ①抽到12號的概率為………………………………… (11分)
②抽到“無效序號(超過20號)”的概率為…………………… (14分)
(選物理方向) 解:(Ⅰ)在給定的直角坐標系下,設(shè)最高點為A,入水點為B,
拋物線的解析式為. …………………………… 2′
由題意,知O(0,0),B(2,-10),且頂點A的縱坐標為.…………… 4′
或 …………………………… 8′
∵拋物線對稱軸在y軸右側(cè),∴,又∵拋物線開口向下,∴a<0,
從而b>0,故有 ……………………………9′
∴拋物線的解析式為. ……………………………10′
(Ⅱ)當運動員在空中距池邊的水平距離為米時,
即時,, ……………………………12′
∴此時運動員距水面的高為10-=<5,因此,此次跳水會失誤.………………14′
17. (1)證明:由直四棱柱,得,
所以是平行四邊形,所以 …………………(3分)
而,,所以面 ………(4分)
(2)證明:因為, 所以 ……(6分)
又因為,且,所以 ……… ……(8分)
而,所以 …………………………(9分)
(3)當點為棱的中點時,平面平面…………………(10分)
取DC的中點N,,連結(jié)交于,連結(jié).
因為N是DC中點,BD=BC,所以;又因為DC是面ABCD與面的交線,而面ABCD⊥面,
所以……………(12分)
又可證得,是的中點,所以BM∥ON且BM=ON,即BMON是平行四邊形,所以BN∥OM,所以O(shè)M平面,
因為OM?面DMC1,所以平面平面………………………(14分)
18. 解:(1)因為,所以c=1……………………(2分)
則b=1,即橢圓的標準方程為…………………………(4分)
(2)因為(1,1),所以,所以,所以直線OQ的方程為y=-2x(6分)
又橢圓的左準線方程為x=-2,所以點Q(-2,4) …………………………(7分)
所以,又,所以,即,
故直線與圓相切……………………………………………………(9分)
(3)當點在圓上運動時,直線與圓保持相切 ………(10分)
證明:設(shè)(),則,所以,,
所以直線OQ的方程為 ……………(12分)
所以點Q(-2,) ……………… (13分)
所以,
又,所以,即,故直線始終與圓相切……(15分)
19.⑴解:函數(shù)的定義域為,()…… (2分)
若,則,有單調(diào)遞增區(qū)間. ……………… (3分)
若,令,得,
當時,,
當時,. ……………… (5分)
有單調(diào)遞減區(qū)間,單調(diào)遞增區(qū)間. ……………… (6分)
⑵解:(i)若,在上單調(diào)遞增,所以. ……… (7分)
若,在上單調(diào)遞減,在上單調(diào)遞增,
所以. ……………… (9分)
若,在上單調(diào)遞減,所以.………… (10分)
綜上所述, ……………… (12分)
(ii)令.若,無解. ……………… (13分)
若,解得. ……………… (14分)
若,解得. ……………… (15分)
故的取值范圍為. ……………… (16分)
20. (1)數(shù)表中第行的數(shù)依次所組成數(shù)列的通項為,則由題意可得
… (2分)
(其中為第行數(shù)所組成的數(shù)列的公差) (4分)
(2)
第一行的數(shù)依次成等差數(shù)列,由(1)知,第2行的數(shù)也依次成等差數(shù)列,依次類推,可知數(shù)表中任一行的數(shù)(不少于3個)都依次成等差數(shù)列. ……………… (5分)
設(shè)第行的數(shù)公差為,則,則…………… (6分)
所以
(10 分)
(3)由,可得
所以= ……………… (11分)
令,則,所以 ………… (13分)
要使得,即,只要=,
,,所以只要,
即只要,所以可以令
則當時,都有.
所以適合題設(shè)的一個函數(shù)為 (16分)
第Ⅱ卷(附加題 共40分)
1. (1)設(shè)動點P的坐標為,M的坐標為,
則即為所求的軌跡方程. …………(6分)
(2)由(1)知P的軌跡是以()為圓心,半徑為的圓,易得RP的最小值為1
.……(10分)
2. ,|x-a|<l,
, …………………………………………………5分
= ………………………10分
3. 證明:以為坐標原點長為單位長度,如圖建立空間直角坐標系,則各點坐標為
.
(1)解:因
所以,與所成的角余弦值為 …………………………………5分
(2)解:在上取一點,則存在使
要使
為
所求二面角的平面角.
…………………………………10分
另解:可以計算兩個平面的法向量分別為:平面AMC的法向量,平面BMC的法向量為,=, 所求二面角的余弦值為-.
4. (1)記事件A為“任取兩張卡片,將卡片上的函數(shù)相加得到的函數(shù)是奇函數(shù)”,由題意知 ………………………………4分
(2)ξ可取1,2,3,4.
,
;………………8分
故ξ的分布列為
ξ
1
2
3
4
P
答:ξ的數(shù)學(xué)期望為 ………………………………10分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com