(1)求證:平面平面, 查看更多

 

題目列表(包括答案和解析)


(1)求證:平面平面
(2)求正方形的邊長;
(3)求二面角的平面角的正切值.

查看答案和解析>>

27、已知:平面α∩平面β=直線a.α,β同垂直于平面γ,又同平行于直線b.
求證:(1)a⊥γ;(2)b⊥γ.

查看答案和解析>>

已知:平面α∩平面β=直線a

α,β同垂直于平面γ,又同平行于直線b

求證:(Ⅰ)aγ;

(Ⅱ)bγ

查看答案和解析>>

已知:平面α∩平面β=直線a.α,β同垂直于平面γ,又同平行于直線b.
求證:(1)a⊥γ;(2)b⊥γ.

精英家教網(wǎng)

查看答案和解析>>

已知:平面α∩平面β=直線a.α,β同垂直于平面γ,又同平行于直線b.
求證:(1)a⊥γ;(2)b⊥γ.

查看答案和解析>>

1.  2.  3. 4.甲  5. 

6.   7.  8.    9.  10.   11.  12. 

13. (1)直三棱柱ABC―A1B1C1中,BB1⊥底面ABC,

則BB1⊥AB,BB1⊥BC,

    又由于AC=BC=BB1=1,AB1=,則AB=,

    則由AC2+BC2=AB2可知,AC⊥BC,

    又由上BB1⊥底面ABC可知BB1⊥AC,則AC⊥平面B1CB,

    所以有平面AB1C⊥平面B1CB;------------------------------------------------------- 8分

(2)三棱錐A1―AB1C的體積.----------14分

(注:還有其它轉(zhuǎn)換方法)

14. 解:(1)由條件知 恒成立

又∵取x=2時,與恒成立,  ∴.

(2)∵   ∴.

恒成立,即恒成立.

,

解出:,

.

(3)由分析條件知道,只要圖象(在y軸右側(cè))總在直線 上方即可,也就是直線的斜率小于直線與拋物線相切時的斜率位置,于是:

 

.

解法2:必須恒成立,

恒成立.

①△<0,即 [4(1-m)]2-8<0,解得: ;

   解出:.

總之,.

 

 


同步練習(xí)冊答案