3 8. 9.0 10.20.5 11.8 12.1050 查看更多

 

題目列表(包括答案和解析)

楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊藏了許多優(yōu)美的規(guī)律.如圖是一個11階楊輝三角:
(1)求第20行中從左到右的第4個數(shù);
(2)若第n行中從左到右第14與第15個數(shù)的比為,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個數(shù)依次為1,3,6,10,15;第4斜列中,第5個數(shù)為35.顯然,1+3+6+10+15=35.事實上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個數(shù)之和,一定等于第m+1斜列中第k個數(shù).試用含有m、k(m,k∈N×)的數(shù)學(xué)公式表示上述結(jié)論,并給予證明.
第0行1第1斜列
第1行11第2斜列
第2行121第3斜列
第3行1331第4斜列
第4行14641第5斜列
第5行15101051第6斜列
第6行1615201561第7斜列
第7行172135352171第8斜列
第8行18285670562881第9斜列
第9行193684126126843691第10斜列
第10行1104512021025221012045101第11斜列
第11行1115516533046246233016555111第12斜列
11階楊輝三角

查看答案和解析>>

楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊藏了許多優(yōu)美的規(guī)律.如圖是一個11階楊輝三角:
(1)求第20行中從左到右的第4個數(shù);
(2)若第n行中從左到右第14與第15個數(shù)的比為,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個數(shù)依次為1,3,6,10,15;第4斜列中,第5個數(shù)為35.顯然,1+3+6+10+15=35.事實上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個數(shù)之和,一定等于第m+1斜列中第k個數(shù).試用含有m、k(m,k∈N×)的數(shù)學(xué)公式表示上述結(jié)論,并給予證明.
第0行1第1斜列
第1行11第2斜列
第2行121第3斜列
第3行1331第4斜列
第4行14641第5斜列
第5行15101051第6斜列
第6行1615201561第7斜列
第7行172135352171第8斜列
第8行18285670562881第9斜列
第9行193684126126843691第10斜列
第10行1104512021025221012045101第11斜列
第11行1115516533046246233016555111第12斜列
11階楊輝三角

查看答案和解析>>

楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊藏了許多優(yōu)美的規(guī)律.如圖是一個11階楊輝三角:
(1)求第20行中從左到右的第4個數(shù);
(2)若第n行中從左到右第14與第15個數(shù)的比為,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個數(shù)依次為1,3,6,10,15;第4斜列中,第5個數(shù)為35.顯然,1+3+6+10+15=35.事實上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個數(shù)之和,一定等于第m+1斜列中第k個數(shù).試用含有m、k(m,k∈N×)的數(shù)學(xué)公式表示上述結(jié)論,并給予證明.
第0行1第1斜列
第1行11第2斜列
第2行121第3斜列
第3行1331第4斜列
第4行14641第5斜列
第5行15101051第6斜列
第6行1615201561第7斜列
第7行172135352171第8斜列
第8行18285670562881第9斜列
第9行193684126126843691第10斜列
第10行1104512021025221012045101第11斜列
第11行1115516533046246233016555111第12斜列
11階楊輝三角

查看答案和解析>>

楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊藏了許多優(yōu)美的規(guī)律.如圖是一個11階楊輝三角:
(1)求第20行中從左到右的第4個數(shù);
(2)若第n行中從左到右第14與第15個數(shù)的比為,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個數(shù)依次為1,3,6,10,15;第4斜列中,第5個數(shù)為35.顯然,1+3+6+10+15=35.事實上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個數(shù)之和,一定等于第m+1斜列中第k個數(shù).試用含有m、k(m,k∈N×)的數(shù)學(xué)公式表示上述結(jié)論,并給予證明.
第0行1第1斜列
第1行11第2斜列
第2行121第3斜列
第3行1331第4斜列
第4行14641第5斜列
第5行15101051第6斜列
第6行1615201561第7斜列
第7行172135352171第8斜列
第8行18285670562881第9斜列
第9行193684126126843691第10斜列
第10行1104512021025221012045101第11斜列
第11行1115516533046246233016555111第12斜列
11階楊輝三角

查看答案和解析>>

楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊藏了許多優(yōu)美的規(guī)律.如圖是一個11階楊輝三角:
(1)求第20行中從左到右的第4個數(shù);
(2)若第n行中從左到右第14與第15個數(shù)的比為,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個數(shù)依次為1,3,6,10,15;第4斜列中,第5個數(shù)為35.顯然,1+3+6+10+15=35.事實上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個數(shù)之和,一定等于第m+1斜列中第k個數(shù).試用含有m、k(m,k∈N×)的數(shù)學(xué)公式表示上述結(jié)論,并給予證明.
第0行1第1斜列
第1行11第2斜列
第2行121第3斜列
第3行1331第4斜列
第4行14641第5斜列
第5行15101051第6斜列
第6行1615201561第7斜列
第7行172135352171第8斜列
第8行18285670562881第9斜列
第9行193684126126843691第10斜列
第10行1104512021025221012045101第11斜列
第11行1115516533046246233016555111第12斜列
11階楊輝三角

查看答案和解析>>


同步練習(xí)冊答案