(1)證明PA⊥平面ABCD, (2)已知點E在PD上.且PE:ED=2:1.點F為棱PC的中點.證明BF//平面AEC. (3)求四面體FACD的體積; 查看更多

 

題目列表(包括答案和解析)

已知PA⊥矩形ABCD所在平面,PA=AD=,E為線段PD上一點.
(1)當E為PD的中點時,求證:BD⊥CE;
(2)是否存在E使二面角E﹣AC﹣D為30°?若存在,求,若不存在,說明理由.

查看答案和解析>>

已知PA⊥矩形ABCD所在平面,PA=AD=,E為線段PD上一點.
(1)當E為PD的中點時,求證:BD⊥CE;
(2)是否存在E使二面角E-AC-D為30°?若存在,求,若不存在,說明理由.

查看答案和解析>>

已知PA⊥矩形ABCD所在平面,PA=AD=,E為線段PD上一點.
(1)當E為PD的中點時,求證:BD⊥CE;
(2)是否存在E使二面角E-AC-D為30°?若存在,求,若不存在,說明理由.

查看答案和解析>>

已知PA⊥矩形ABCD所在平面,PA=AD=AB,E為線段PD上一點.

(1)當E為PD的中點時,求證:BD⊥CE;

(2)是否存在E使二面角E-AC-D為30°?若存在,求,若不存在,說明理由.

查看答案和解析>>

如圖,已知四棱錐P-ABCD的底面ABCD是平行四邊形,PA=AB=AD=a,PB=PD=
2
a
,點E為PB的中點,點F為PC的中點.
(Ⅰ)求證:PD∥面EAC;
(Ⅱ)求證:面PBD⊥面PAC;
(Ⅲ)在線段BD上是否存在一點H滿足FH∥面EAC?若存在,請指出點H的具體位置,若不存在,請說明理由.

查看答案和解析>>

一、選擇題:(每題5分,共60分)

20080416

二、填空題:每題5分,共20分)

13.[-5,7]; 14.();   15.(1,2)(2,3);    16.②③④

17.解:(1),

.又,.(6分)

   (2)由

,.(6分)

18.證明:(1)因為在正方形ABCD中,AC=2

  • <td id="chl9g"><ins id="chl9g"></ins></td>

      1. 可得:在△PAB中,PA2+AB2=PB2=6。

        所以PA⊥AB

        同理可證PA⊥AD

        故PA⊥平面ABCD (4分)

           (2)取PE中點M,連接FM,BM,

        連接BD交AC于O,連接OE

        ∵F,M分別是PC,PF的中點,

        ∴FM∥CE,

        又FM面AEC,CE面AEC

        ∴FM∥面AEC

        又E是DM的中點

        OE∥BM,OE面AEC,BM面AEC

        ∴BM∥面AEC且BM∩FM=M

        ∴平面BFM∥平面ACE

        又BF平面BFM,∴BF∥平面ACE (4分)

           (3)連接FO,則FO∥PA,因為PA⊥平面ABCD,則FO⊥平面ABCD,所以FO=1,

        SㄓACD=1,

            ∴VFACD=VF――ACD=  (4分)

        19. (1)由已知圓的標準方程為:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

        設圓的圓心坐標為(x,y),則(為參數(shù)),

        消參數(shù)得圓心的軌跡方程為:x2+y2=a2,…………(5分)

           (2)有方程組得公共弦的方程:

        圓X2+Y2=a2的圓心到公共弦的距離d=,(定值)

        ∴弦長l=(定值)               (5分)

        20.解:(1),

        時,取最小值

        .(6分)

           (2)令,

        ,(不合題意,舍去).

        變化時,的變化情況如下表:

        遞增

        極大值

        遞減

        內(nèi)有最大值

        內(nèi)恒成立等價于內(nèi)恒成立,

        即等價于,

        所以的取值范圍為.(6分)

        21.解:(1),

        ,

        數(shù)列是首項為,公比為的等比數(shù)列,

        時,,

             (6分)

           (2)

        時,;

        時,,…………①

        ,………………………②

        得:

        也滿足上式,

        .(6分)

        22.解:(1)由題意橢圓的離心率

                

        ∴橢圓方程為……2分

        又點在橢圓上

                 ∴橢圓的方程為(4分)

        (2)設

        消去并整理得……6分

        ∵直線與橢圓有兩個交點

        ,即……8分

        中點的坐標為……10分

        的垂直平分線方程:

        ……12分

        將上式代入得

           即 

        的取值范圍為…………(8分)

         

         


        同步練習冊答案