因此..解得并推得. ----5分 查看更多

 

題目列表(包括答案和解析)

設(shè)橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標(biāo)原點.

(Ⅰ)若直線的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線的斜率 滿足

【解析】(1)解:設(shè)點P的坐標(biāo)為.由題意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線OP的方程為,設(shè)點P的坐標(biāo)為.

由條件得消去并整理得  ②

,

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線OP的方程為,設(shè)點P的坐標(biāo)為.

由P在橢圓上,有

因為,,所以,即   ③

,,得整理得.

于是,代入③,

整理得

解得

所以.

 

查看答案和解析>>

已知冪函數(shù)滿足。

(1)求實數(shù)k的值,并寫出相應(yīng)的函數(shù)的解析式;

(2)對于(1)中的函數(shù),試判斷是否存在正數(shù)m,使函數(shù),在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請說明理由。

【解析】本試題主要考查了函數(shù)的解析式的求解和函數(shù)的最值的運用。第一問中利用,冪函數(shù)滿足,得到

因為,所以k=0,或k=1,故解析式為

(2)由(1)知,,,因此拋物線開口向下,對稱軸方程為:,結(jié)合二次函數(shù)的對稱軸,和開口求解最大值為5.,得到

(1)對于冪函數(shù)滿足,

因此,解得,………………3分

因為,所以k=0,或k=1,當(dāng)k=0時,

當(dāng)k=1時,,綜上所述,k的值為0或1,!6分

(2)函數(shù),………………7分

由此要求,因此拋物線開口向下,對稱軸方程為:,

當(dāng)時,,因為在區(qū)間上的最大值為5,

所以,或…………………………………………10分

解得滿足題意

 

查看答案和解析>>

閱讀不等式5x≥4x+1的解法:
解:由5x≥4x+1,兩邊同除以5x可得1≥(
4
5
)x+(
1
5
)x

由于0<
1
5
4
5
<1
,顯然函數(shù)f(x)=(
4
5
x+(
1
5
x在R上為單調(diào)減函數(shù),
f(1)=
4
5
+
1
5
=1
,故當(dāng)x>1時,有f(x)=(
4
5
x+(
1
5
x<f(x)=1
所以不等式的解集為{x|x≥1}.
利用解此不等式的方法解決以下問題:
(1)解不等式:9x>5x+4x
(2)證明:方程5x+12x=13x有唯一解,并求出該解.

查看答案和解析>>

4. m>2或m<-2 解析:因為f(x)=在(-1,1)內(nèi)有零點,所以f(-1)f(1)<0,即(2+m)(2-m)<0,則m>2或m<-2

隨機(jī)變量的所有等可能取值為1,2…,n,若,則(    )

A. n=3        B.n=4          C. n=5        D.不能確定

5.m=-3,n=2 解析:因為的兩零點分別是1與2,所以,即,解得

6.解析:因為只有一個零點,所以方程只有一個根,因此,所以

查看答案和解析>>

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得,于是,所以

(2) ,設(shè)平面PCD的法向量,

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點E的坐標(biāo)為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>


同步練習(xí)冊答案