以分開沿不同的路線同時傳遞.則單位時間內(nèi)傳遞的最大信息量為 A.26 B.24C.20 D.19 第Ⅱ卷(非選擇題 共100分) 查看更多

 

題目列表(包括答案和解析)

小黑點(diǎn)表示網(wǎng)絡(luò)的結(jié)點(diǎn),結(jié)點(diǎn)之間的連線表示它們有網(wǎng)絡(luò)相連,連線上標(biāo)注的數(shù)字表示該段網(wǎng)線單位時間內(nèi)可以通過的最大信息量,F(xiàn)在從結(jié)點(diǎn)A向結(jié)點(diǎn)B傳遞信息,信息可分開沿不同的路線同時傳遞,則單位時間內(nèi)傳遞的最大信息量為

[     ]

A.9
B.21
C.12
D.8

查看答案和解析>>

如圖,小方框表示網(wǎng)絡(luò)結(jié)點(diǎn),結(jié)點(diǎn)之間的連線表示他們有網(wǎng)線相連。連線標(biāo)注的數(shù)字表示該段網(wǎng)線單位時間內(nèi)可以通過的最大信息量,F(xiàn)在從結(jié)點(diǎn)A向結(jié)點(diǎn)B傳遞信息,信息可以分開沿不同的路線同時傳遞,則單位時間內(nèi)傳遞的最大信息量為(     )

 


A.20        B. 21        C. 19         D. 17

查看答案和解析>>

如圖,小圓圈表示網(wǎng)絡(luò)的結(jié)點(diǎn),結(jié)點(diǎn)之間的連線表示它們有網(wǎng)線相聯(lián).連線標(biāo)注的數(shù)字表示該段網(wǎng)線單位時間內(nèi)可以通過的最大信息量. 現(xiàn)從結(jié)點(diǎn)向結(jié)點(diǎn)傳遞信息,信息可以分開沿不同的路線同時傳遞。則單位時間內(nèi)傳遞的最大信息量為

[  ]

A.26   B.24   C.20   D.19

查看答案和解析>>

 小圓圈表示網(wǎng)絡(luò)的結(jié)點(diǎn),結(jié)點(diǎn)之間的連結(jié)表示它們有網(wǎng)線相連。相連標(biāo)注的數(shù)字表示該段網(wǎng)線單位時間內(nèi)可以通過的最大信息量,F(xiàn)從結(jié)點(diǎn)A向結(jié)點(diǎn)B傳遞信息,信息可以分開沿不同路程線同時傳遞,則單位時間內(nèi)傳遞的最大信息量為(    )

A.11             B.10            C.8              D.7

查看答案和解析>>

如圖,小圓圈表示網(wǎng)絡(luò)的結(jié)點(diǎn),結(jié)點(diǎn)之間的箭頭表示它們有網(wǎng)線相聯(lián),連線標(biāo)注的數(shù)字表示該段網(wǎng)線單位時間內(nèi)可以通過的最大信息量,F(xiàn)從結(jié)點(diǎn)A向結(jié)點(diǎn)G傳遞信息,信息可以分開沿不同的路線同時傳遞。則單位時間內(nèi)傳遞的最大信息量為(   )

A.31               B.6                C.10               D.14

 

查看答案和解析>>

一、選擇題(每小題5分,共50分)

題號

1

2

3

4

5

6

7

8

9

10

答案

B

A

B

B

C

C

A

D

C

D

 

二、填空題(每小題5分,共20分)

11.     8     ;              12. AC⊥BD ( ABCD是正方形或菱形); 

13.         ;              14.           ;

三、解答題(本大題共6小題,共80分. 解答應(yīng)寫出文字說明、證明過程或演算步驟)

15.(本小題滿分12分)

解:(1)           …………………………1分

      ………………………………2分

.      ………………………………………4分

的最小正周期是.      …………………………………6分

(2)由      …………………….8分

,∴ ∴     …………10分

       ………………………………………………12分

16.(本小題滿分12分)

解:(1)當(dāng)時,,對任意

      為偶函數(shù)   ……………………3分

      當(dāng)時,

      取,得    

        函數(shù)既不是奇函數(shù),也不是偶函數(shù)……6分

(2)解法一:要使函數(shù)上為增函數(shù)等價于上恒成立                              ……………8分

上恒成立,故上恒成立

                   …………………………………10分

∴  的取值范圍是           ………………………………12分

解法二:設(shè)

    ………8分 

    要使函數(shù)上為增函數(shù),必須恒成立

    ,即恒成立   …………………………………10分

    又  

    的取值范圍是       ………………………………12分

17.(本小題滿分14分)

證明: (1)取PC的中點(diǎn)G,連結(jié)FG、EG

∴FG為△CDP的中位線  ∴FGCD……1分

∵四邊形ABCD為矩形,E為AB的中點(diǎn)

∴ABCD     ∴FGAE

∴四邊形AEGF是平行四邊形   ………………2分

∴AF∥EG                       ………3分

又EG平面PCE,AF平面PCE  ………4分

∴AF∥平面PCE   ………………………………………5分

     (2)∵ PA⊥底面ABCD

∴PA⊥AD,PA⊥CD,又AD⊥CD,PAAD=A

∴CD⊥平面ADP

又AF平面ADP         ∴CD⊥AF ……………………………… 6分

直角三角形PAD中,∠PDA=45°

∴△PAD為等腰直角三角形   ∴PA=AD=2   …………………………  7分

∵F是PD的中點(diǎn)

∴AF⊥PD,又CDPD=D

∴AF⊥平面PCD                    ………………………………  8分

∵AF∥EG

∴EG⊥平面PCD                    ……………………………  9分

又EG平面PCE

平面PCE⊥平面PCD                 …………………………… 10分

(3)三棱錐C-BEP即為三棱錐P-BCE     ……………………………11分

PA是三棱錐P-BCE的高,

Rt△BCE中,BE=1,BC=2,

∴三棱錐C-BEP的體積

VC-BEP=VP-BCE= … 14分

18.(本小題滿分14分)

解:(1)由已知得          解得.…………………1分

    設(shè)數(shù)列的公比為,由,可得

,可知,即,      …………………4分

解得

由題意得.  .………………………………………… 6分

故數(shù)列的通項為.  … ……………………………………8分

(2)由于    由(1)得

    =  ………………………………………10分

    又

    是首項為公差為的等差數(shù)列            ……………12分

   

        …………………………14分

19.(本小題滿分14分)

解:(1)如圖,設(shè)為動圓圓心, ,過點(diǎn)作直線的垂線,垂足為,由題意知:             ……………………………………2分

即動點(diǎn)到定點(diǎn)與到定直線的距離相等,

由拋物線的定義知,點(diǎn)的軌跡為拋物線,其中為焦點(diǎn),            

為準(zhǔn)線, 

∴動圓圓心的軌跡方程為     ……………………………………5分

(2)由題可設(shè)直線的方程為

   

   △    ………………………………………………7分

設(shè),,則,  ………………………9分

   由,即 ,,于是,……11分

   ,解得(舍去),  …………………13分

,   ∴ 直線存在,其方程為       ……………14分

20.(本小題滿分14分)

解:(1)由已知,得,比較兩邊系數(shù),

.      ……………………4分

   (2)令,要有三個不等的實(shí)數(shù)根,則函數(shù)

一個極大值和一個極小值,且極大值大于0,極小值小于0.  …………5分

由已知,得有兩個不等的實(shí)根

,     得.……… 6分

,將代入(1)(3),有,又

,              ………8分

,且處取得極大值,在處取得極小值10分      故要有三個不等的實(shí)數(shù)根,

則必須                 ……………… 12分

  解得.                            ………………… 14分

 

 


同步練習(xí)冊答案