16. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an

   (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進(jìn)行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標(biāo)原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時,求弦長|AB|的取值范圍.

查看答案和解析>>

一、選擇題(每小題5分,共50分)

題號

1

2

3

4

5

6

7

8

9

10

答案

B

A

B

B

C

C

A

D

C

D

 

二、填空題(每小題5分,共20分)

11.     8     ;              12. AC⊥BD ( ABCD是正方形或菱形); 

13.         ;              14.           ;

三、解答題(本大題共6小題,共80分. 解答應(yīng)寫出文字說明、證明過程或演算步驟)

15.(本小題滿分12分)

解:(1)           …………………………1分

      ………………………………2分

.      ………………………………………4分

的最小正周期是.      …………………………………6分

(2)由      …………………….8分

,∴ ∴     …………10分

       ………………………………………………12分

16.(本小題滿分12分)

解:(1)當(dāng)時,,對任意

      為偶函數(shù)   ……………………3分

      當(dāng)時,

      取,得    

        函數(shù)既不是奇函數(shù),也不是偶函數(shù)……6分

(2)解法一:要使函數(shù)上為增函數(shù)等價于上恒成立                              ……………8分

上恒成立,故上恒成立

                   …………………………………10分

∴  的取值范圍是           ………………………………12分

解法二:設(shè)

    ………8分 

    要使函數(shù)上為增函數(shù),必須恒成立

    ,即恒成立   …………………………………10分

    又  

    的取值范圍是       ………………………………12分

17.(本小題滿分14分)

證明: (1)取PC的中點G,連結(jié)FG、EG

∴FG為△CDP的中位線  ∴FGCD……1分

∵四邊形ABCD為矩形,E為AB的中點

∴ABCD     ∴FGAE

∴四邊形AEGF是平行四邊形   ………………2分

∴AF∥EG                       ………3分

又EG平面PCE,AF平面PCE  ………4分

∴AF∥平面PCE   ………………………………………5分

     (2)∵ PA⊥底面ABCD

∴PA⊥AD,PA⊥CD,又AD⊥CD,PAAD=A

∴CD⊥平面ADP

又AF平面ADP         ∴CD⊥AF ……………………………… 6分

直角三角形PAD中,∠PDA=45°

∴△PAD為等腰直角三角形   ∴PA=AD=2   …………………………  7分

∵F是PD的中點

∴AF⊥PD,又CDPD=D

∴AF⊥平面PCD                    ………………………………  8分

∵AF∥EG

∴EG⊥平面PCD                    ……………………………  9分

又EG平面PCE

平面PCE⊥平面PCD                 …………………………… 10分

(3)三棱錐C-BEP即為三棱錐P-BCE     ……………………………11分

PA是三棱錐P-BCE的高,

Rt△BCE中,BE=1,BC=2,

∴三棱錐C-BEP的體積

VC-BEP=VP-BCE= … 14分

18.(本小題滿分14分)

解:(1)由已知得          解得.…………………1分

    設(shè)數(shù)列的公比為,由,可得

,可知,即,      …………………4分

解得

由題意得.  .………………………………………… 6分

故數(shù)列的通項為.  … ……………………………………8分

(2)由于    由(1)得

    =  ………………………………………10分

    又

    是首項為公差為的等差數(shù)列            ……………12分

   

        …………………………14分

19.(本小題滿分14分)

解:(1)如圖,設(shè)為動圓圓心, ,過點作直線的垂線,垂足為,由題意知:             ……………………………………2分

即動點到定點與到定直線的距離相等,

由拋物線的定義知,點的軌跡為拋物線,其中為焦點,            

為準(zhǔn)線, 

∴動圓圓心的軌跡方程為     ……………………………………5分

(2)由題可設(shè)直線的方程為

   

   △,    ………………………………………………7分

設(shè),則,  ………………………9分

   由,即 ,于是,……11分

,,

   ,解得(舍去),  …………………13分

,   ∴ 直線存在,其方程為       ……………14分

20.(本小題滿分14分)

解:(1)由已知,得,比較兩邊系數(shù),

.      ……………………4分

   (2)令,要有三個不等的實數(shù)根,則函數(shù)

一個極大值和一個極小值,且極大值大于0,極小值小于0.  …………5分

由已知,得有兩個不等的實根,

,     得.……… 6分

,,將代入(1)(3),有,又

,              ………8分

,且處取得極大值,在處取得極小值10分      故要有三個不等的實數(shù)根,

則必須                 ……………… 12分

  解得.                            ………………… 14分

 

 


同步練習(xí)冊答案