18. 先后拋擲兩枚骰子.每次各1枚.求下列事件發(fā)生的概率: (1)事件A:“出現(xiàn)的點數(shù)之和大于3 , (2)事件B:“出現(xiàn)的點數(shù)之積是3的倍數(shù) . 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

、兩枚骰子各拋擲一次,觀察向上的點數(shù),問:

(1)共有多少種不同的結(jié)果?

(2)兩數(shù)之和是3的倍數(shù)的結(jié)果有多少種?

(3)兩數(shù)之和是3的倍數(shù)的概率是多少?

查看答案和解析>>

(本小題滿分12分)

同時擲兩個骰子,計算:

(Ⅰ)一共有多少種不同的結(jié)果?

(Ⅱ)其中向上的點數(shù)之和是5的結(jié)果有多少種?概率是多少?

(III)向上的點數(shù)之和小于5的概率是多少?

 

查看答案和解析>>

(本小題滿分12分)某人玩擲正方體骰子走跳棋的游戲,已知骰子每面朝上的概率都是   ,棋盤上標(biāo)有第0站,第1站,第2站,……,第100站。一枚棋子開始在第0站,選手每擲一次骰子,棋子向前跳動一次,若擲出朝上的點數(shù)為1或2,棋子向前跳一站;若擲出其余點數(shù),則棋子向前跳兩站,直到棋子跳到第99站(勝利大本營)或第100站(失敗大本營)時,該游戲結(jié)束。設(shè)棋子跳到第n站的概率為    ;

 (1)求         ;(2) 求證:         為等比數(shù)列;(3)求玩該游戲獲勝的概率。

 

 

查看答案和解析>>

(本小題滿分12分)

某人拋擲一枚硬幣,出現(xiàn)正反面的概率都是,構(gòu)造數(shù)列,使得,記,

(1)若拋擲4次,求的概率;

(2)已知拋擲6次的基本事件總數(shù)是N=64,求前兩次均出現(xiàn)正面且的概率.

查看答案和解析>>

(本小題滿分12分)某人玩擲正方體骰子走跳棋的游戲,已知骰子每面朝上的概率都是   ,棋盤上標(biāo)有第0站,第1站,第2站,……,第100站。一枚棋子開始在第0站,選手每擲一次骰子,棋子向前跳動一次,若擲出朝上的點數(shù)為1或2,棋子向前跳一站;若擲出其余點數(shù),則棋子向前跳兩站,直到棋子跳到第99站(勝利大本營)或第100站(失敗大本營)時,該游戲結(jié)束。設(shè)棋子跳到第n站的概率為    ;

 (1)求         ;(2) 求證:         為等比數(shù)列;(3)求玩該游戲獲勝的概率。

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

BADD  CCCB  AADB

二、填空題:本大題共4小 題,每小題4分,共16分。

13.6ec8aac122bd4f6e

14.6ec8aac122bd4f6e

15.-2

16.73

20090406

17.解:(1)6ec8aac122bd4f6e   2分

       6ec8aac122bd4f6e   4分

       6ec8aac122bd4f6e

       6ec8aac122bd4f6e

       6ec8aac122bd4f6e   6分

   (2)6ec8aac122bd4f6e

       根據(jù)正弦函數(shù)的圖象可得:

       當(dāng)6ec8aac122bd4f6e時,

       6ec8aac122bd4f6e取最大值1   8分

       當(dāng)6ec8aac122bd4f6e

       6ec8aac122bd4f6e   10分

       6ec8aac122bd4f6e

       即6ec8aac122bd4f6e   12分

18.解:先后拋擲兩枚骰子可能出現(xiàn)的情況:(1,1),(1,2),(1,3),…,(1,6);(2,1)(2,2),(2,3),…,(2,6);…;(6,1),(6,2),(6,3),…,(6,6),基本事件總數(shù)為36。   2分

   (1)在上述基本事件中,“點數(shù)之和等于3”的事件只有(1,2),(2,1)兩個可能,點數(shù)之和等于2的只有(1,1)一個可能的結(jié)果,記點數(shù)之和不大于3為事件A1,則事件A1發(fā)生的概率為:6ec8aac122bd4f6e   4分

       6ec8aac122bd4f6e事件“出現(xiàn)的點數(shù)之和大于3”發(fā)生的概率為

       6ec8aac122bd4f6e   7分

   (2)與(1)類似,在上述基本事件中,“點數(shù)之積是3的倍數(shù)”的事件有20個可能的結(jié)果。

       所以事件“出現(xiàn)的點數(shù)之積是3的倍數(shù)”發(fā)生的概率為

       6ec8aac122bd4f6e   12分

<blockquote id="ikcci"></blockquote>
<blockquote id="ikcci"></blockquote>
<noscript id="ikcci"><bdo id="ikcci"></bdo></noscript>
<kbd id="ikcci"></kbd>

       6ec8aac122bd4f6eBCD是等邊三角形,

       6ec8aac122bd4f6eE是CD的中點,6ec8aac122bd4f6e

       而AB//CD,6ec8aac122bd4f6e   2分

       又6ec8aac122bd4f6e平面ABCD,

       6ec8aac122bd4f6e

       而呵呵平面PAB。   4分

       又平面PAB。   6分

   (2)由(1)知,平面PAB,所以

       又是二面角A―BE―P的平面角  9分

       平面ABCD,

      

       在

      

       故二面角A―BE―P的大小是   12分

20.解:(1)

       是首項為的等比數(shù)列   2分

          4分

       當(dāng)仍滿足上式。

      

       注:未考慮的情況,扣1分。

   (2)由(1)得,當(dāng)時,

          8分

      

      

       兩式作差得

      

      

          12分

 

 

21.解:(1)因為且AB通過原點(0,0),所以AB所在直線的方程為

       由得A、B兩點坐標(biāo)分別是A(1,1),B(-1,-1)。

<fieldset id="ikcci"></fieldset>
<fieldset id="ikcci"></fieldset>
<noscript id="ikcci"><s id="ikcci"></s></noscript>
  • <em id="ikcci"><rt id="ikcci"></rt></em>
  • <optgroup id="ikcci"><s id="ikcci"></s></optgroup>

             又的距離。

                4分

         (2)設(shè)AB所在直線的方程為

             由

             因為A,B兩點在橢圓上,所以

            

             即   5分

             設(shè)A,B兩點坐標(biāo)分別為,則

            

             且   6分

            

               8分

             又的距離,

             即   10分

            

             邊最長。(顯然

             所以AB所在直線的方程為   12分

      22.解:(1)

             當(dāng)

             令   3分

             當(dāng)的變化情況如下表:

            

      0

      2

      -

      0

      +

      0

      -

      0

      +

      單調(diào)遞減

      極小值

      單調(diào)遞增

      極大值

      單調(diào)遞減

      極小值

      單調(diào)遞增

             所以上是增函數(shù),

             在區(qū)間上是減函數(shù)   6分

         (2)的根。

             處有極值。

             則方程有兩個相等的實根或無實根,

                8分

             解此不等式,得

             這時,是唯一極值。

             因此滿足條件的   10分

             注:若未考慮進(jìn)而得到,扣2分。

         (3)由(2)知,當(dāng)恒成立。

             當(dāng)上是減函數(shù),

             因此函數(shù)   12分

             又上恒成立。

            

             于是上恒成立。

            

             因此滿足條件的   14分

       

       


      同步練習(xí)冊答案
      <source id="ikcci"></source>