對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿(mǎn)足①存在閉區(qū)間[a,b]⊆D,使得任取x
1∈[a,b],都有f(x
1)=c(c是常數(shù));②對(duì)于D內(nèi)任意x
2,當(dāng)x
2∉[a,b]時(shí)總有f(x
2)>c;則稱(chēng)f(x)為“平底型”函數(shù).
(1)判斷f
1(x)=|x-1|+|x-2|,f
2(x)=x+|x-2|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(2)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),(k∈R,k≠0)對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(3)若
F(x)=mx+,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值.