5~90.518 查看更多

 

題目列表(包括答案和解析)

已知10只狗的血球體積及紅血球的測量值如下:
x 45 42 46 48 42 35 58 40 39 50
y 6.53 6.30 9.25 7.50 6.99 5.90 9.49 6.20 6.55 7.72
x(血球體積,mm),y(血紅球數(shù),百萬)
(1)畫出上表的散點(diǎn)圖;
(2)求出回歸直線并且畫出圖形 
(3)回歸直線必經(jīng)過的一點(diǎn)是哪一點(diǎn)?

查看答案和解析>>

精英家教網(wǎng)為了加強(qiáng)中學(xué)生實(shí)踐、創(chuàng)新能力和團(tuán)隊精神的培養(yǎng),促進(jìn)教育教學(xué)改革,市教育局舉辦了全市中學(xué)生創(chuàng)新知識競賽,某中學(xué)舉行了選拔賽,共有150名學(xué)生參加,為了了解成績情況,從中抽取了50名學(xué)生的成績進(jìn)行統(tǒng)計.請你根據(jù)尚未完成的頻率分布表,解答下列問題:

分組 頻數(shù) 頻率
第1組 60.5-70.5   0.26
第2組 70.5-80.5 15
第3組 80.5-90.5 18 0.36
第4組 90.5-100.5
合計 50 1
(1)完成頻率分布表(直接寫出結(jié)果),并作出頻率分布直方圖;
(2)若成績在95.5分以上的學(xué)生為一等獎,試估計全校獲一等獎的人數(shù),現(xiàn)在從全校所有一等獎的同學(xué)中隨機(jī)抽取2名同學(xué)代表學(xué)校參加決賽,某班共有2名同學(xué)榮獲一等獎,求該班同學(xué)參加決賽的人數(shù)恰為1人的概率.

查看答案和解析>>

(2012•鄭州二模)為加強(qiáng)中學(xué)生實(shí)踐、創(chuàng)新能力和團(tuán)隊精神的培養(yǎng),促進(jìn)教育教學(xué)改革,鄭州市教育局舉辦了全市中學(xué)生創(chuàng)新知識競賽.某校舉行選拔賽,共有200名學(xué)生參加,為了解成績情況,從中抽取50名學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計.請你根據(jù)尚未完成的頻率分布表,解答下列問題:
分組 頻數(shù) 頻率
60.5-70.5 a 0.26
70.5-80.5 15 c
80.5-90.5 18 0.36
90.5-100.5 b d
合計 50 e
(I)若用系統(tǒng)抽樣的方法抽取50個樣本,現(xiàn)將所有學(xué)生隨機(jī)地編號為000,001,002,…,199,試寫出第二組第一位學(xué)生的編號;
(II) 求出a,b,c,d,e的值(直接寫出結(jié)果),并作出頻率分布直方圖;
(III)若成績在85.5?95.5分的學(xué)生為二等獎,問參賽學(xué)生中獲得二等獎的學(xué)生約為多少人?

查看答案和解析>>

昆明的水資源極度缺乏,為了減少用水浪費(fèi),節(jié)約水資源,生活用水實(shí)行階梯式水價,規(guī)定每戶居民月實(shí)際用水量在10m3以內(nèi)(含10m3),按3.45元/m3收取水費(fèi)(含污水處理費(fèi),下同);實(shí)際用水量超過10m3的,具體標(biāo)準(zhǔn)為:用水量在區(qū)間(10,15](單位:m3)的部分,按5.90元/m3收取水費(fèi);用水量在區(qū)間(15,20](單位:m3)的部分,按7.14元/m3收取水費(fèi);用水量超過20m3的部分,按8.35元/m3收取水費(fèi).
(1)將某家庭今年八月的水費(fèi)f(x)(單位:元)表示為該月用水量x(0≤x≤50,單位m3)的函數(shù);
(2)某家庭今年八月的水費(fèi)為166.50元,請計算該家庭八月的用水量.

查看答案和解析>>

某市舉行了“高速公路免費(fèi)政策”滿意度測評,共有1萬人參加了這次測評(滿分100分,得分全為整數(shù)).為了解本次測評分?jǐn)?shù)情況,從中隨機(jī)抽取了部分人的測評分?jǐn)?shù)進(jìn)行統(tǒng)計,整理見下表:
組別 分組 頻數(shù) 頻率
1 [50,60) 60 0.12
2 [60,70> 120 0.24
3 [70,80) 180 0.36
4 [80,90) 130 c
5 [90,100] a 0.02
合計 b 1.00
(1)求出表中a,b,r的值;
(2)若分?jǐn)?shù)在60分以上(含60分)的人對“高速公路免費(fèi)政策”表示滿意,現(xiàn)從全市參加了這 次滿意度測評的人中隨機(jī)抽取一人,求此人滿意的概率;
(3)請你估計全市的平均分?jǐn)?shù).

查看答案和解析>>

一、填空題:

 1.;             2.;               3.;         4.;          5.;

6.;      7.              8.;      9.21;                      10.;

11.;12.;           13.;       14.

二、解答題:

15.(1)編號為016;                     ----------------------------3分

(2)

分組

頻數(shù)

頻率

60.5~70.5

8

0.16

70.5~80.5

10

0.20

80.5~90.5

18

0.36

90.5~100.5

14

0.28

合計

50

1

 

 

 

 

 

 

 

 

  ------------- ----------------------------8分

(3)在被抽到的學(xué)生中獲二獎的人數(shù)是9+7=16人,

占樣本的比例是,即獲二等獎的概率約為32%,

所以獲二等獎的人數(shù)估計為800×32%=256人。有   ------------------------13分

答:獲二等獎的大約有256人。       -----------------------------------14分

 

16.解:(1) B=600,AC=1200, C=1200 A

∴ sinA-sinC cos(AC

sinA cosA[1-2sin2A-60°)]=,

∴sin(A-60°)[1- sin(A-60°)]=0?      -------------------------4分

∴sin(A-60°)=0或sin(A-60°)=, 又0°<A<120°,

A=60°或105°.???                          -------------------------8分

(2) 當(dāng)A=60°時,acsinB×42sin360°=         ------------11分

當(dāng)A=105°時,?S×42?sin105°sin15°sin60°=  ----------------14分

17.解:(1)如四面體A1-ABC或四面體C1-ABC或四面體A1-ACD或四面體C1-ACD; ---4分

(2)如四面體B1-ABC或四面體D1-ACD;        -------------------------8分

(3)如四面體A-B1CD1(3分 );              -------------------------11分

設(shè)長方體的長、寬、高分別為,則 .---------14分

18.(1)如圖,由光學(xué)幾何知識可知,點(diǎn)關(guān)于的對稱點(diǎn)在過點(diǎn)且傾斜角為的直線上。在中,橢圓長軸長,   ----4分

又橢圓的半焦距,∴,

∴所求橢圓的方程為.             -----------------------------7分

   (2)路程最短即為上上的點(diǎn)到圓的切線長最短,由幾何知識可知,應(yīng)為過原點(diǎn)且與垂直的直線與的交點(diǎn),這一點(diǎn)又與點(diǎn)關(guān)于對稱,∴,故點(diǎn)的坐標(biāo)為.                                 -------------------------15分

注:用代數(shù)方法求解同樣分步給分!

19. 解:(1)若,對于正數(shù)的定義域為,但 的值域,故,不合要求.  --------------------------2分

,對于正數(shù),的定義域為. -----------------3分

由于此時,

故函數(shù)的值域.    ------------------------------------6分

由題意,有,由于,所以.------------------8分

20.解:(1)依題意數(shù)列的通項公式是,

故等式即為,

同時有,

兩式相減可得 ------------------------------3分

可得數(shù)列的通項公式是,

知數(shù)列是首項為1,公比為2的等比數(shù)列。 ---------------------------4分

(2)設(shè)等比數(shù)列的首項為,公比為,則,從而有:

,

          -----------------------------6分

,

要使是與無關(guān)的常數(shù),必需,  ----------------------------8分

即①當(dāng)?shù)缺葦?shù)列的公比時,數(shù)列是等差數(shù)列,其通項公式是;

②當(dāng)?shù)缺葦?shù)列的公比不是2時,數(shù)列不是等差數(shù)列.    ------------9分

(3)由(2)知,    ------------------------------------------10分

  --------------14分

    ----------------------------16分

 

 

<source id="dlpxl"><sup id="dlpxl"></sup></source>

<td id="dlpxl"></td>
  •   分

    評卷人

    17.(本題滿分14分)

     

     

     

    數(shù)學(xué)卷附加題參考答案

    1.的中點(diǎn),

     

    2.解: (1)   ;           ---------------------------------------------------------4分

    (2)矩陣的特征多項式為 

    ,    -----------------------------------------------------------------------5分

    當(dāng) ,當(dāng).  ----------------------------------------6分

    ,得.  -------------------------------------7分

                    .--------------------10分

     

     

     

    4.簡證:(1)∵,∴,,三個同向正值不等式相乘得.------------------------------5分

    簡解:(2)時原不等式仍然成立.

    思路1:分類討論、、證;

    思路2:左邊=.-------------------------------------10分

     

    5.(1)記“該生考上大學(xué)”的事件為事件A,其對立事件為,則

           碼---------------------------------------------------------------2分

           ----------------------------------------------4分

           (2)參加測試次數(shù)的可能取值為2,3,4,5,--------------------------------------5分

          

           ,

           ,

           +.  --------------------------------------------------8分

           故的分布列為:

    2

    3

    4

    5

    P

           .       --------------------------------9分

           答:該生考上大學(xué)的概率為;所求數(shù)學(xué)期望是.----------------------------10分

     

     

     


    同步練習(xí)冊答案

      <span id="dlpxl"></span>

        <style id="dlpxl"><label id="dlpxl"><source id="dlpxl"></source></label></style><style id="dlpxl"><meter id="dlpxl"></meter></style>