題目列表(包括答案和解析)
已知,則的值為( )
A.1 B.2 C.-1 D.
已知,則的值為 ( )
A. B.1 C. D.2
已知,則的值為( )
(A)-1 (B)-1或 (C) (D)
已知,則的值為 ( )
A.0 B. C.1 D.
已知,則的值為( )
A.4 B.1 C.1或4 D.4或-1
一、選擇題
ADBBD ABBAD
二、填空題
11、 12、 13、C 14、21 15、 16、(-,0)
三、解答題
17、解:(1) 4分
∵f(x)的最小值為3
所以-a+=3,a=2
∴f(x)=-2sin(2x+)+5 6分
(2)因為(-)變?yōu)榱?),所以h=,k=-5
由圖象變換得=-2sin(2x-) 8分
由2kp+≤2x-≤2kp+ 得kp+≤x≤kp+ 所以單調增區(qū)間為
[kp+, kp+](k∈Z) 13分
18、解:(1)如圖,在四棱錐中,
∵BC∥AD,從而點D到平面PBC間的距離等于點A
到平面PBC的距離. 2分
∵∠ABC=,∴AB⊥BC,
又PA⊥底面ABCD,∴PA⊥BC,
∴BC⊥平面 PAB, 4分
∴平面PAB⊥平面PBC,交線為PB,
過A作AE⊥PB,垂足為E,則AE⊥平面PBC,
∴AE的長等于點D到平面PBC的距離.
而,∴.
即點D到平面PBC的距離為. 6分
(2)依題意依題意四棱錐P-ABCD的體積為,
∴(BC+AD)AB×PA=,∴, 8分
平面PDC在平面PAB上的射影為PAB,SPAB=, 10分
PC=,PD=,DC=,SPDC=a2, 12分
設平面PDC和平面PAB所成二面角為q,則cosq==
q=arccos. 13分
19、解:(1)從10 道不同的題目中不放回地隨機抽取3次,每次只抽取1道題,抽法總數(shù)為只有第一次抽到藝術類數(shù)目的抽法總數(shù)為
∴ 5分
(2)抽到體育類題目的可能取值為0,1,2,3則
∴的分布列為
0
1
2
3
P
10分
11分
從而有 13分
20、解:(1)設與在公共點處的切線相同
1分
由題意知 ,∴ 3分
由得,,或(舍去)
即有 5分
(2)設與在公共點處的切線相同
由題意知 ,∴
即有 8分
令,則,于是
當,即時,;
當,即時, 11分
21、解:(1)∵且|PF1|+|PF2|=
∴P的軌跡為以F1、F2為焦點的橢圓E,可設E:(其中b2=a2-5) 2分
在△PF
又
∴當且僅當| PF1 |=| PF2 |時,| PF1 |?| PF2 |取最大值, 4分
此時cos∠F1PF2取最小值
令=a2=9,
∵c= ∴b2=4故所求P的軌跡方程為 6分
(2)設N(s,t),M(x,y),則由,可得(x,y-3)=λ(s,t-3)
∴x=λs,y=3+λ(t-3) 7分
而M、N在動點P的軌跡上,故且
消去S得解得 10分
又| t |≤2,∴,解得,故λ的取值范圍是[,5] 12分
22、解:(1)由,得,代入,得,
整理,得,從而有,,
是首項為1,公差為1的等差數(shù)列,即. 4分
(2), ,
,
,
. 8分
(3)∵
.
由(2)知,,
. 12分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com