1.第Ⅱ卷包括填空題和解答題共兩個大題. 查看更多

 

題目列表(包括答案和解析)

將填空題和解答題用0.5毫米的黑色墨水簽字筆答在答題卡上每題對應(yīng)的答題區(qū)域內(nèi).答在試題卷上無效。

查看答案和解析>>

函數(shù)f(x)=3sin的圖象為C,如下結(jié)論中正確的是________(寫出所有正確結(jié)論的編號).①圖象C關(guān)于直線x=對稱;②圖象C關(guān)于點(diǎn)對稱;③由y=3sin2x的圖象向右平移個單位長度可以得到圖象C;④函數(shù)f(x)在區(qū)間內(nèi)是增函數(shù).

第Ⅱ卷 主觀題部分(共80分)

查看答案和解析>>

已知均為正數(shù),,則的最小值是            (    )

         A.            B.           C.             D.

第Ⅱ卷  (非選擇題  共90分)

二、填空題:本大題共4小題,每小題4分,共16分,將答案填在題中的橫線上。

查看答案和解析>>

 

第Ⅱ卷(非選擇題,共90分)

二、填空題:(本大題4小題,每小題5分,滿分20分)

13.用一個平面去截正方體,其截面是一個多邊形,則這個多邊形的邊數(shù)最多是     條 。

 

查看答案和解析>>

已知函數(shù)

(1)在給定的直角坐標(biāo)系內(nèi)畫出的圖象;

(2)寫出的單調(diào)遞增區(qū)間(不需要證明);

(3)寫出的最大值和最小值(不需要證明).

 (第II卷)   50分

一、填空題(本大題共2小題,每小題4分,共8分.把答案填在答題卡上)

查看答案和解析>>

 

一、選擇題:

<dd id="mgcyu"><legend id="mgcyu"></legend></dd>

1,3,5

二、填空題

13.       14.190     15.②④            16.

三、解答題

17.(1)

                            …………4分

∵A為銳角,∴,∴,

∴當(dāng)時,                           …………6分

   (2)由題意知,∴

又∵,∴,∴,              …………8分

又∵,∴,                                …………9分

由正弦定理         …………12分

18.解:(I)由函數(shù)

                       …………2分

                              …………4分

                                                   …………6分

   (II)由,

                            …………8分

,                                             …………10分

                                                  

故要使方程           …………12分

19.(I)連接BD,則AC⊥BD,

∵D1D⊥地面ABCD,∴AC⊥D1D

∴AC⊥平面BB1D1D,

∵D1P平面BB1D1D,∴D1P⊥AC.…………4分

   (II)解:設(shè)連D1O,PO,

∵D1A=D1C,∴D1O⊥AC,同理PO⊥AC,

又∵D1O∩PO=0,

∴AC⊥平面POD1 ………………6分

∵AB=2,∠ABC=60°,

∴AO=CO=1,BO=DO=

∴D1O=

                        …………9分

,                        …………10分

    …………12分

20.解:(I)當(dāng) ;                       …………1分

當(dāng)

                                                            …………4分

驗(yàn)證,

                     …………5分

   (II)該商場預(yù)計(jì)銷售該商品的月利潤為

,

                                                            …………7分

(舍去)……9分

綜上5月份的月利潤最大是3125元。                           …………12分

21.解:(I)∵|OA1|=|OA2|=|OA3|=2,                             …………1分

∴外接圓C以原點(diǎn)O為圓心,線段OA1為半徑,故其方程為……3分

∴所求橢圓C1的方程是                            …………6分

   (II)直線PQ與圓C相切。

證明:設(shè)

 

 

 

∴直線OQ的方程為                            …………8分

因此,點(diǎn)Q的坐標(biāo)為

                                                            …………10分

綜上,當(dāng)2時,OP⊥PQ,故直線PQ始終與圓C相切。        …………12分

22.解:(I)由題意知:                         …………2分

解得

                                         …………4分

   (II)

當(dāng),                  …………6分

                                    …………8分

故數(shù)列             …………10分

   (III)若

從而

                           …………11分

即數(shù)列                                         …………13分

                             …………14分

 

 


同步練習(xí)冊答案
<cite id="mgcyu"></cite>