A.T=2π.一條對稱軸方程為 B.T=2π.一條對稱軸方程為 查看更多

 

題目列表(包括答案和解析)

對稱軸為坐標(biāo)軸,頂點在坐標(biāo)原點的拋物線C經(jīng)過兩點A(a,2a)、B(4a,4a),(其中a為正常數(shù)).
(1)求拋物線C的方程;
(2)設(shè)動點T(m,0)(m>a),直線AT、BT與拋物線C的另一個交點分別為A1、B1,當(dāng)m變化時,記所有直線A1B1組成的集合為M,求證:集合M中的任意兩條直線都相交且交點都不在坐標(biāo)軸上.

查看答案和解析>>

對稱軸為坐標(biāo)軸,頂點在坐標(biāo)原點的拋物線C經(jīng)過兩點A(a,2a)、B(4a,4a),(其中a為正常數(shù)).
(1)求拋物線C的方程;
(2)設(shè)動點T(m,0)(m>a),直線AT、BT與拋物線C的另一個交點分別為A1、B1,當(dāng)m變化時,記所有直線A1B1組成的集合為M,求證:集合M中的任意兩條直線都相交且交點都不在坐標(biāo)軸上.

查看答案和解析>>

對稱軸為坐標(biāo)軸,頂點在坐標(biāo)原點的拋物線C經(jīng)過兩點A(a,2a)、B(4a,4a),(其中a為正常數(shù)).
(1)求拋物線C的方程;
(2)設(shè)動點T(m,0)(m>a),直線AT、BT與拋物線C的另一個交點分別為A1、B1,當(dāng)m變化時,記所有直線A1B1組成的集合為M,求證:集合M中的任意兩條直線都相交且交點都不在坐標(biāo)軸上.

查看答案和解析>>

在△PAB中,已知A(-
6
,0)
、B(
6
,0)
,動點P滿足|PA|=|PB|+4.
(Ⅰ)求動點P的軌跡方程;
(Ⅱ)設(shè)M(-2,0),N(2,0),過點N作直線l垂直于AB,且l與直線MP交于點Q,試在x軸上確定一點T,使得PN⊥QT;
(Ⅲ)在(Ⅱ)的條件下,設(shè)點Q關(guān)于x軸的對稱點為R,求
OP
OR
的值.

查看答案和解析>>

在△PAB中,已知A(-
6
,0)
B(
6
,0)
,動點P滿足|PA|=|PB|+4.
(I)求動點P的軌跡方程;
(II)設(shè)M(-2,0),N(2,0),過點N作直線l垂直于AB,且l與直線MP交于點Q,,試在x軸上確定一點T,使得PN⊥QT;
(III)在(II)的條件下,設(shè)點Q關(guān)于x軸的對稱點為R,求
OP
OR
的值.

查看答案和解析>>


同步練習(xí)冊答案