18. 查看更多

 

題目列表(包括答案和解析)

(本小題滿(mǎn)分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿(mǎn)足:,設(shè),

若(2)中的滿(mǎn)足對(duì)任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿(mǎn)分14分)已知,點(diǎn)軸上,點(diǎn)軸的正半軸,點(diǎn)在直線上,且滿(mǎn)足. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點(diǎn)軸上移動(dòng)時(shí),求動(dòng)點(diǎn)的軌跡方程;

(Ⅱ)過(guò)的直線與軌跡交于、兩點(diǎn),又過(guò)作軌跡的切線、,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿(mǎn)分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

(本小題滿(mǎn)分14分)

已知,其中是自然常數(shù),

(1)討論時(shí), 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,

(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

(本小題滿(mǎn)分14分)

設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記

(I)求數(shù)列的通項(xiàng)公式;

(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有;

(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿(mǎn)足:對(duì)任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

一、選擇題:

  

1

2

3

4

5

6

7

8

9

10

A

D

A

D

B

C

A

C

B

A

二、填空題:

11.       12.         13.       14.    15.64

16.設(shè)是三棱錐四個(gè)面上的高為三棱錐內(nèi)任一點(diǎn),到相應(yīng)四個(gè)面的距離分別為我們可以得到結(jié)論:

17.

 

三、解答題:

18.解:(1)由圖像知 , ,,又圖象經(jīng)過(guò)點(diǎn)(-1,0)

  

      

   (2)

  

     ,  

當(dāng)時(shí),的最大值為,當(dāng)

 即時(shí),  最小值為

 

19.(1)由幾何體的正視圖、側(cè)視圖、俯視圖的面積總和為8得中點(diǎn),聯(lián)結(jié),分別是的中點(diǎn),,,E、F、F、G四點(diǎn)共面

平面,平面

(2)就是二面角的平面角

中,, 

,即二面角的大小為

解法二:建立如圖所示空間直角坐標(biāo)系,設(shè)平面

的一個(gè)法向量為

        

,又平面的法向量為(1,0,0)

(3)設(shè)

平面點(diǎn)是線段的中點(diǎn)

 

20.解(1)由題意可知

  又

(2)兩類(lèi)情況:共擊中3次概率

共擊中4次概率

所求概率為

(3)設(shè)事件分別表示甲、乙能擊中,互相獨(dú)立。

為所 求概率

 

21.解(1)設(shè)過(guò)拋物線的焦點(diǎn)的直線方程為(斜率不存在),則    得,

當(dāng)(斜率不存在)時(shí),則

  ,所求拋物線方程為

(2)設(shè)

由已知直線的斜率分別記為:,得

    

  

 

22.解:(I)依題意知:直線是函數(shù)在點(diǎn)(1,0)處的切線,故其斜率所以直線的方程為

又因?yàn)橹本的圖像相切  所以由

   (Ⅱ)因?yàn)?sub>所以

當(dāng)時(shí),  當(dāng)時(shí), 

因此,上單調(diào)遞增,在上單調(diào)遞減。

因此,當(dāng)時(shí),取得最大值

(Ⅲ)當(dāng)時(shí),,由(Ⅱ)知:當(dāng)時(shí),,即因此,有

 


同步練習(xí)冊(cè)答案