(2)求二面角的大小, 查看更多

 

題目列表(包括答案和解析)

二面角α-EF-β的大小為120°,A是它內部的一點AB⊥α,AC⊥β,B,C分別為垂足.
(1)求證:平面ABC⊥β;
(2)當AB=4cm,AC=6cm,求BC的長及A到EF的距離.

查看答案和解析>>

二面角αEFβ的大小為120°,A是它內部的一點ABαACβ,B,C分別為垂足.

(1)求證:平面ABCβ;

(2)當AB=4cm,AC=6cm,求BC的長及AEF的距離.

查看答案和解析>>

二面角α-EF-β的大小為120°,A是它內部的一點AB⊥α,AC⊥β,B,C分別為垂足.
(1)求證:平面ABC⊥β;
(2)當AB=4cm,AC=6cm,求BC的長及A到EF的距離.

查看答案和解析>>

二面角α-EF-β的大小為120°,A是它內部的一點AB⊥α,AC⊥β,B,C分別為垂足.
(1)求證:平面ABC⊥β;
(2)當AB=4cm,AC=6cm,求BC的長及A到EF的距離.

查看答案和解析>>

已知二面角αCDβ的大小為60°,EA⊥平面α,垂足為A,EB⊥平面β,垂足為B,EA=3,EB=4.

(1)求證:CD⊥AB;

(2)求E到CD的距離.

查看答案和解析>>

一、選擇題:

  

1

2

3

4

5

6

7

8

9

10

A

D

A

D

B

C

A

C

B

A

二、填空題:

11.       12.         13.       14.    15.64

16.設是三棱錐四個面上的高為三棱錐內任一點,到相應四個面的距離分別為我們可以得到結論:

17.

 

三、解答題:

18.解:(1)由圖像知 , ,,又圖象經過點(-1,0)

  

      

   (2)

  

     ,  

時,的最大值為,當

 即時,  最小值為

 

19.(1)由幾何體的正視圖、側視圖、俯視圖的面積總和為8得中點,聯(lián)結,分別是的中點,,E、F、F、G四點共面

平面,平面

(2)就是二面角的平面角

中,, 

,即二面角的大小為

解法二:建立如圖所示空間直角坐標系,設平面

的一個法向量為

        

,又平面的法向量為(1,0,0)

(3)設

平面是線段的中點

 

20.解(1)由題意可知

  又

(2)兩類情況:共擊中3次概率

共擊中4次概率

所求概率為

(3)設事件分別表示甲、乙能擊中,互相獨立。

為所 求概率

 

21.解(1)設過拋物線的焦點的直線方程為(斜率不存在),則    得,

(斜率不存在)時,則

  ,所求拋物線方程為

(2)設

由已知直線的斜率分別記為:,得

    

  

 

22.解:(I)依題意知:直線是函數(shù)在點(1,0)處的切線,故其斜率所以直線的方程為

又因為直線的圖像相切  所以由

   (Ⅱ)因為所以

時,  當時, 

因此,上單調遞增,在上單調遞減。

因此,當時,取得最大值

(Ⅲ)當時,,由(Ⅱ)知:當時,,即因此,有

 


同步練習冊答案