題目列表(包括答案和解析)
如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA底面ABCD,AC=,PA=2,E是PC上的一點(diǎn),PE=2EC。
(I) 證明PC平面BED;
(II) 設(shè)二面角A-PB-C為90°,求PD與平面PBC所成角的大小
【解析】本試題主要是考查了四棱錐中關(guān)于線面垂直的證明以及線面角的求解的運(yùn)用。
從題中的線面垂直以及邊長和特殊的菱形入手得到相應(yīng)的垂直關(guān)系和長度,并加以證明和求解。
解法一:因?yàn)榈酌鍭BCD為菱形,所以BDAC,又
【點(diǎn)評】試題從命題的角度來看,整體上題目與我們平時練習(xí)的試題和相似,底面也是特殊的菱形,一個側(cè)面垂直于底面的四棱錐問題,那么創(chuàng)新的地方就是點(diǎn)E的位置的選擇是一般的三等分點(diǎn),這樣的解決對于學(xué)生來說就是比較有點(diǎn)難度的,因此最好使用空間直角坐標(biāo)系解決該問題為好。
已知直三棱柱中, , , 是和的交點(diǎn), 若.
(1)求的長; (2)求點(diǎn)到平面的距離;
(3)求二面角的平面角的正弦值的大小.
【解析】本試題主要考查了距離和角的求解運(yùn)用。第一問中,利用ACCA為正方形, AC=3
第二問中,利用面BBCC內(nèi)作CDBC, 則CD就是點(diǎn)C平面ABC的距離CD=,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為
解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 …………… 5分
(2)在面BBCC內(nèi)作CDBC, 則CD就是點(diǎn)C平面ABC的距離CD= … 8分
(3) 易得AC面ACB, 過E作EHAB于H, 連HC, 則HCAB
CHE為二面角C-AB-C的平面角. ……… 9分
sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分
解法二: (1)分別以直線CB、CC、CA為x、y為軸建立空間直角坐標(biāo)系, 設(shè)|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ……………………… 3分
=(2, -, -), =(0, -3, -h(huán)) ……… 4分
·=0, h=3
(2)設(shè)平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)
點(diǎn)A到平面ABC的距離為H=||=……… 8分
(3) 設(shè)平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)
二面角C-AB-C的大小滿足cos== ……… 11分
二面角C-AB-C的平面角的正弦大小為
如圖,邊長為2的正方形ABCD,E是BC的中點(diǎn),沿AE,DE將折起,使得B與C重合于O.
(Ⅰ)設(shè)Q為AE的中點(diǎn),證明:QDAO;
(Ⅱ)求二面角O—AE—D的余弦值.
【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質(zhì)定理得到線線垂直。取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,
AO=DO=2.AODM
因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO
AO平面DMQ,AODQ
第二問中,作MNAE,垂足為N,連接DN
因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM
,因?yàn)锳ODM ,DM平面AOE
因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=
(1)取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,
AO=DO=2.AODM
因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO
AO平面DMQ,AODQ
(2)作MNAE,垂足為N,連接DN
因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM
,因?yàn)锳ODM ,DM平面AOE
因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=
二面角O-AE-D的平面角的余弦值為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com