甲 乙 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)甲乙兩名運(yùn)動(dòng)員在某項(xiàng)測(cè)試中的8次成績(jī)?nèi)缜o葉圖所示,
.
x
1
,
.
x
2
分別表示甲乙兩名運(yùn)動(dòng)員這項(xiàng)測(cè)試成績(jī)的平均數(shù),s1,s2分別表示甲乙兩名運(yùn)動(dòng)員這項(xiàng)測(cè)試成績(jī)的標(biāo)準(zhǔn)差,則有( 。
A、
.
x
1
.
x
2
,s1<s2
B、
.
x
1
=
.
x
2
,s1<s2
C、
.
x
1
=
.
x
2
,s1=s2
D、
.
x
1
.
x
2
,s1>s2

查看答案和解析>>

甲乙兩人同時(shí)從A地出發(fā)往B地,甲在前一半時(shí)間以速度v1行駛,在后一半時(shí)間以速度v2行駛,乙在前一半路程以速度v1行駛,在后一半路程以速度v2行駛,(v1≠v2).則下列說(shuō)法正確的是( 。
A、甲先到達(dá)B地B、乙先到達(dá)B地C、甲乙同時(shí)到達(dá)B地D、無(wú)法確定誰(shuí)先到達(dá)B地

查看答案和解析>>

10、甲乙兩人連續(xù)6年對(duì)某縣農(nóng)村鰻魚(yú)養(yǎng)殖業(yè)的規(guī)模(總產(chǎn)量)進(jìn)行調(diào)查,提供了兩個(gè)方面的信息,分別得到甲,乙兩圖:

甲調(diào)查表明:每個(gè)魚(yú)池平均產(chǎn)量直線上升,從第1年1萬(wàn)條鰻魚(yú)上升到第6年2萬(wàn)條.
乙調(diào)查表明:全縣魚(yú)池總個(gè)數(shù)直線下降,由第1年30個(gè)減少到第6年10個(gè).
請(qǐng)你根據(jù)提供的信息說(shuō)明:
(1)第2年全縣魚(yú)池的個(gè)數(shù)及全縣出產(chǎn)的鰻魚(yú)總數(shù).
(2)到第6年這個(gè)縣的鰻魚(yú)養(yǎng)殖業(yè)的規(guī)模比第1年擴(kuò)大了還是縮小了?說(shuō)明理由.
(3)哪一年的規(guī)模(即總產(chǎn)量)最大?說(shuō)明理由.

查看答案和解析>>

甲乙兩人各有相同的小球10個(gè),在每人的10個(gè)小球中都有5個(gè)標(biāo)有數(shù)字1,3個(gè)標(biāo)有數(shù)字2,2個(gè)標(biāo)有數(shù)字3.兩人同時(shí)分別從自己的小球中任意抽取1個(gè),規(guī)定:若抽取的兩個(gè)小球上的數(shù)字相同,則甲獲勝,否則乙獲勝.
(1)求取出的兩個(gè)球都標(biāo)有數(shù)字1的概率;
(2)求乙獲勝的概率.

查看答案和解析>>

18、甲乙兩人射擊氣球的命中率分別為0.7與0.4,如果每人射擊2次.
(I)求甲擊中1個(gè)氣球且乙擊中兩個(gè)氣球的概率;
(II)求甲、乙兩人擊中氣球個(gè)數(shù)相等的概率.

查看答案和解析>>

 

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

A

A

A

D

B

C

C

B

C

B

 

 

13.    14. 2    15.    16. ①②③

 

17. 解:(1)由得:,             2分

即b = c = 1-a,        4分

當(dāng)時(shí),

  因?yàn)?sub>,有1-a > 0,,得a = -1

 故                      8分

(2)∵是奇函數(shù),且將的圖象先向右平移個(gè)單位,再向上平移1個(gè)單位,可以得到的圖象,∴是滿足條件的一個(gè)平移向量.        12分

18. 解:(1)由等可能事件的概率意義及概率計(jì)算公式得;   5分

 (2)設(shè)選取的5只福娃恰好距離組成完整“奧運(yùn)會(huì)吉祥物”差兩種福娃記為事件B,

依題意可知,至少差兩種福娃,只能是差兩種福娃,則

6ec8aac122bd4f6e        11分

故選取的5只福娃距離組成完整“奧運(yùn)會(huì)吉祥物”至少差兩種福娃的概率為  12分

 

19.     解:(1)

又平面平面

………………4分

(2)

∴點(diǎn)到平面的距離即求點(diǎn)到平面的距離

   取中點(diǎn),連結(jié)

為等邊三角形

                                                               

又由(1)知

  ∴點(diǎn)到平面的距離即點(diǎn)到平面的距離為………………8分

   (3)二面角即二面角

   過(guò),垂足為點(diǎn),連結(jié)

由(2)及三垂線定理知

為二面角的平面角

  

   …12分

解法2:(1)如圖,取中點(diǎn),連結(jié)

為等邊三角形

又∵平面平面   

建立空間直角坐標(biāo)系,則有

,

………………4分

(2)設(shè)平面的一個(gè)法向量為

∴點(diǎn)到平面的距離即求點(diǎn)到平面的距離

………………………………8分

(3)平面的一個(gè)法向量為

設(shè)平面的一個(gè)法向量為

,

∴二面角的大小為…………………………………12分

 

 

20. 解:(1)由題意知

當(dāng)n=1時(shí),

當(dāng)

兩式相減得

整理得:)       ………………………………………………(4分)

∴數(shù)列{an}是為首項(xiàng),2為公比的等比數(shù)列.

            ……………………………………(5分)

(2)

           …………………………………………………………(6分)

     …… ①

     …… ②

①-②得         ……………(9分)

                   ………………………(11分)

          ………………………………………………………(12分)

 

21. 解:(1)由,∴ 

設(shè),則,  

   

同理,有,∴為方程的兩根

. 設(shè),則     ①

  ②

由①、②消去得點(diǎn)的軌跡方程為.   ………………………………6分

(2)

∴當(dāng)時(shí),.        ………………………………12分

 

 

22. 解:(1)

………………………………………………………………………2分

的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為…………5分

(2)由題

……………………6分

……………………………………………7分

當(dāng)時(shí)

 

 

 

 

 

 

 

 

 

此時(shí),,,有一個(gè)交點(diǎn);…………………………9分

當(dāng)時(shí),

   

  

 

 

  

,

∴當(dāng)時(shí),有一個(gè)交點(diǎn);

當(dāng)時(shí),有兩個(gè)交點(diǎn);

      當(dāng)時(shí),,有一個(gè)交點(diǎn).………………………13分

綜上可知,當(dāng)時(shí),有一個(gè)交點(diǎn);

          當(dāng)時(shí),有兩個(gè)交點(diǎn).…………………………………14分

 

 

 


同步練習(xí)冊(cè)答案