在條件下.函數(shù)的最小值是 . 查看更多

 

題目列表(包括答案和解析)

最小值為0,最小正周期為
π
2
,直線x=
π
3
是其圖象的一條對(duì)稱軸,在下列各函數(shù)中,符合上述條件的是
④⑤
④⑤

①y=4sin(4x+
π
6
)+2
;   ②y=2sin(2x+
π
3
)+2
;   ③y=2sin(4x+
π
3
)+2
;
y=2sin(4x+
π
6
)+2
;   ⑤y=2cos(4x-
π
3
)+2

查看答案和解析>>

已知函數(shù),函數(shù)的最小值為

(1)求的解析式;

(2)是否存在實(shí)數(shù)同時(shí)滿足下列兩個(gè)條件:①;②當(dāng)的定義域?yàn)?IMG src='http://thumb.zyjl.cn/pic1/img/20091130/20091130153442006.gif' width=44 height=27>時(shí),值域?yàn)?IMG src='http://thumb.zyjl.cn/pic1/img/20091130/20091130153442007.gif' width=57 height=29>?若存在,求出的值;若不存在,請(qǐng)說明理由

查看答案和解析>>

已知函數(shù),函數(shù)的最小值為

(1)求的解析式;

(2)是否存在實(shí)數(shù)同時(shí)滿足下列兩個(gè)條件:①;②當(dāng)的定義域?yàn)?img width=44 height=27 src="http://thumb.zyjl.cn/pic1/1899/sx/199/222399.gif">時(shí),值域?yàn)?img width=57 height=29 src="http://thumb.zyjl.cn/pic1/1899/sx/0/222400.gif">?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

最小值為0,最小正周期為
π
2
,直線x=
π
3
是其圖象的一條對(duì)稱軸,在下列各函數(shù)中,符合上述條件的是______.
①y=4sin(4x+
π
6
)+2
;   ②y=2sin(2x+
π
3
)+2
;   ③y=2sin(4x+
π
3
)+2
;
y=2sin(4x+
π
6
)+2
;   ⑤y=2cos(4x-
π
3
)+2

查看答案和解析>>

最小值為0,最小正周期為數(shù)學(xué)公式,直線數(shù)學(xué)公式是其圖象的一條對(duì)稱軸,在下列各函數(shù)中,符合上述條件的是________.
數(shù)學(xué)公式;  數(shù)學(xué)公式;  數(shù)學(xué)公式;
數(shù)學(xué)公式;  ⑤數(shù)學(xué)公式

查看答案和解析>>

 

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

A

A

A

D

B

C

C

B

C

B

 

 

13.    14. 2    15.    16. ①②③

 

17. 解:(1)由得:,             2分

即b = c = 1-a,        4分

當(dāng)時(shí),,

  因?yàn)?sub>,有1-a > 0,,得a = -1

 故                      8分

(2)∵是奇函數(shù),且將的圖象先向右平移個(gè)單位,再向上平移1個(gè)單位,可以得到的圖象,∴是滿足條件的一個(gè)平移向量.        12分

18. 解:(1)由等可能事件的概率意義及概率計(jì)算公式得;   5分

 (2)設(shè)選取的5只福娃恰好距離組成完整“奧運(yùn)會(huì)吉祥物”差兩種福娃記為事件B,

依題意可知,至少差兩種福娃,只能是差兩種福娃,則

6ec8aac122bd4f6e        11分

故選取的5只福娃距離組成完整“奧運(yùn)會(huì)吉祥物”至少差兩種福娃的概率為  12分

 

19.     解:(1)

又平面平面

………………4分

(2)

∴點(diǎn)到平面的距離即求點(diǎn)到平面的距離

   取中點(diǎn),連結(jié)

為等邊三角形

                                                               

又由(1)知

  ∴點(diǎn)到平面的距離即點(diǎn)到平面的距離為………………8分

   (3)二面角即二面角

   過,垂足為點(diǎn),連結(jié)

由(2)及三垂線定理知

為二面角的平面角

  

   …12分

解法2:(1)如圖,取中點(diǎn),連結(jié)

為等邊三角形

又∵平面平面   

建立空間直角坐標(biāo)系,則有

,

………………4分

(2)設(shè)平面的一個(gè)法向量為

∴點(diǎn)到平面的距離即求點(diǎn)到平面的距離

………………………………8分

(3)平面的一個(gè)法向量為

設(shè)平面的一個(gè)法向量為

,

∴二面角的大小為…………………………………12分

 

 

20. 解:(1)由題意知

當(dāng)n=1時(shí),

當(dāng)

兩式相減得

整理得:)       ………………………………………………(4分)

∴數(shù)列{an}是為首項(xiàng),2為公比的等比數(shù)列.

            ……………………………………(5分)

(2)

           …………………………………………………………(6分)

     …… ①

     …… ②

①-②得         ……………(9分)

                   ………………………(11分)

          ………………………………………………………(12分)

 

21. 解:(1)由,∴ 

設(shè),則,  

   

同理,有,∴為方程的兩根

. 設(shè),則     ①

  ②

由①、②消去得點(diǎn)的軌跡方程為.   ………………………………6分

(2)

∴當(dāng)時(shí),.        ………………………………12分

 

 

22. 解:(1)

………………………………………………………………………2分

的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為…………5分

(2)由題

……………………6分

……………………………………………7分

當(dāng)時(shí)

 

 

 

 

 

 

 

 

 

此時(shí),,,有一個(gè)交點(diǎn);…………………………9分

當(dāng)時(shí),

   

  

 

 

  

,

∴當(dāng)時(shí),有一個(gè)交點(diǎn);

當(dāng)時(shí),有兩個(gè)交點(diǎn);

      當(dāng)時(shí),,有一個(gè)交點(diǎn).………………………13分

綜上可知,當(dāng)時(shí),有一個(gè)交點(diǎn);

          當(dāng)時(shí),有兩個(gè)交點(diǎn).…………………………………14分

 

 

 


同步練習(xí)冊(cè)答案