題目列表(包括答案和解析)
如圖,在底面是正方形的四棱錐P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
(I)求證:PD⊥BC;
(II)求二面角B—PD—C的正切值。
【解析】第一問利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,
BC在平面ABCD內(nèi) ,BC⊥CD,∴BC⊥平面PCD.
∴PD⊥BC.
第二問中解:取PD的中點E,連接CE、BE,
為正三角形,
由(I)知BC⊥平面PCD,∴CE是BE在平面PCD內(nèi)的射影,
∴BE⊥PD.∴∠CEB為二面角B—PD—C的平面角,進而求解。
如圖所示,已知直線與不共面,直線,直線,又平面,平面,平面,求證:三點不共線.
(本小題滿分12分)如圖,在矩形中,,又⊥平面,.
(Ⅰ)若在邊上存在一點,使,
求的取值范圍;
(Ⅱ)當邊上存在唯一點,使時,
求二面角的余弦值.
如圖所示的長方體中,底面是邊長為的正方形,為與的交點,,是線段的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求二面角的大。
【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運用。中利用,又平面,平面,∴平面由,,又,∴平面. 可得證明
(3)因為∴為面的法向量.∵,,
∴為平面的法向量.∴利用法向量的夾角公式,,
∴與的夾角為,即二面角的大小為.
方法一:解:(Ⅰ)建立如圖所示的空間直角坐標系.連接,則點、,
∴,又點,,∴
∴,且與不共線,∴.
又平面,平面,∴平面.…………………4分
(Ⅱ)∵,
∴,,即,,
又,∴平面. ………8分
(Ⅲ)∵,,∴平面,
∴為面的法向量.∵,,
∴為平面的法向量.∴,
∴與的夾角為,即二面角的大小為
①E、F、G、H四點可以構(gòu)成一個平行四邊形;
②E、F、G、H四點不能構(gòu)成一個平行四邊形;
③E、F、G、H四點可能共線;
④E、F、G、H四點不可能共線.
其中正確的是___________.(將正確命題序號都填上)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com