故二面角―AM―N的平面角的余弦值為. 查看更多

 

題目列表(包括答案和解析)

在正三棱錐S-ABC中,M,N分別是SB,SC的中點(diǎn).若面AMN⊥面SBC,則二面角S-BC-A的平面角的余弦值為
6
6
6
6

查看答案和解析>>

(2013•石景山區(qū)二模)如圖1,四棱錐P-ABCD中,PD⊥底面ABCD,面ABCD是直角梯形,M為側(cè)棱PD上一點(diǎn).該四棱錐的俯視圖和側(cè)(左)視圖如圖2所示.
(Ⅰ)證明:BC⊥平面PBD;
(Ⅱ)證明:AM∥平面PBC;
(Ⅲ)線段CD上是否存在點(diǎn)N,使AM與BN所成角的余弦值為
3
4
?若存在,找到所有符合要求的點(diǎn)N,并求CN的長;若不存在,說明理由.

查看答案和解析>>

(2011•許昌一模)在等邊三角形ABC中,M、N、P分別為AB、AC、BC的中點(diǎn),沿MN將△AMN折起,使得面AMN與面MNCB所成的二面角的余弦值為
13
,則直線AM與NP所成角α應(yīng)滿足
60°
60°

查看答案和解析>>

三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分別是AB,A1C的中點(diǎn).
(1)求直線MN與平面A1B1C所成的角;
(2)在線段AC上是否存在一點(diǎn)E,使得二面角E-B1A1-C的余弦值為
3
10
10
?若存在,求出AE的長,若不存在,請說明理由.

查看答案和解析>>

如圖,在正三棱錐P-ABC中,M,N分別是側(cè)棱PB、PC上的點(diǎn),若PM:MB=CN:NP=2:1,且平面AMN⊥平面PBC,則二面角A-BC-P的平面角的余弦值為(  )

查看答案和解析>>


同步練習(xí)冊答案