2.多用轉(zhuǎn)化的思想求線面和面面距離, 查看更多

 

題目列表(包括答案和解析)

已知是等差數(shù)列,其前n項(xiàng)和為, 是等比數(shù)列,且 

(I)求數(shù)列的通項(xiàng)公式;

(II)記求證:,。

【考點(diǎn)定位】本小題主要考查等差數(shù)列與等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和公式、數(shù)列求和等基礎(chǔ)知識(shí).考查化歸與轉(zhuǎn)化的思想方法.考查運(yùn)算能力、推理論證能力.

 

查看答案和解析>>

如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn),作交PB于點(diǎn)F.

(1)證明 平面;

(2)證明平面EFD;

(3)求二面角的大。

【解析】本試題主要考查了立體幾何中線面平行的判定,線面垂直的判定,以及二面角的求解的綜合運(yùn)用試題。體現(xiàn)了運(yùn)用向量求解立體幾何的代數(shù)手法的好處。

 

查看答案和解析>>

如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA底面ABCD,AC=,PA=2,E是PC上的一點(diǎn),PE=2EC。

(I)     證明PC平面BED;

(II)   設(shè)二面角A-PB-C為90°,求PD與平面PBC所成角的大小

【解析】本試題主要是考查了四棱錐中關(guān)于線面垂直的證明以及線面角的求解的運(yùn)用。

從題中的線面垂直以及邊長(zhǎng)和特殊的菱形入手得到相應(yīng)的垂直關(guān)系和長(zhǎng)度,并加以證明和求解。

解法一:因?yàn)榈酌鍭BCD為菱形,所以BDAC,又

【點(diǎn)評(píng)】試題從命題的角度來(lái)看,整體上題目與我們平時(shí)練習(xí)的試題和相似,底面也是特殊的菱形,一個(gè)側(cè)面垂直于底面的四棱錐問(wèn)題,那么創(chuàng)新的地方就是點(diǎn)E的位置的選擇是一般的三等分點(diǎn),這樣的解決對(duì)于學(xué)生來(lái)說(shuō)就是比較有點(diǎn)難度的,因此最好使用空間直角坐標(biāo)系解決該問(wèn)題為好。

 

查看答案和解析>>

(本小題滿分12分)

                      一個(gè)四棱錐P-ABCD的正視圖是邊長(zhǎng)為2的正方形及其一條對(duì)角線,側(cè)視圖和俯視圖全全等的等腰直角三角形,直角邊長(zhǎng)為2,直觀圖如圖.

(1)求四棱錐P-ABCD的體積:

(2)求直線PC和面PAB所成線面角的余弦值;

(3)M為棱PB上的一點(diǎn),當(dāng)PM長(zhǎng)為何值時(shí),CM⊥PA?

 

 

 

 

 

查看答案和解析>>

一個(gè)四棱錐P-ABCD的正視圖是邊長(zhǎng)為2的正方形及其一條對(duì)角線,側(cè)視圖和俯視圖全全等的等腰直角三角形,直角邊長(zhǎng)為2,直觀圖如圖.

       (1)求四棱錐P-ABCD的體積:

       (2)求直線PC和面PAB所成線面角的余弦值;

       (3)M為棱PB上的一點(diǎn),當(dāng)PM長(zhǎng)為何值時(shí),CM⊥PA?

查看答案和解析>>


同步練習(xí)冊(cè)答案