22 查看更多

 

題目列表(包括答案和解析)

(22) (本小題滿分12分)(注意:在試題卷上作答無效)如圖,已知拋物線與圓相交于A、B、C、D四個點。

(Ⅰ)求r的取值范圍

(Ⅱ)當四邊形ABCD的面積最大時,求對角線AC、BD的交點P的坐標。

查看答案和解析>>

(22) (本小題滿分12分)(注意:在試題卷上作答無效)如圖,已知拋物線與圓相交于A、B、C、D四個點。
(Ⅰ)求r的取值范圍
(Ⅱ)當四邊形ABCD的面積最大時,求對角線AC、BD的交點P的坐標。

查看答案和解析>>

(本小題滿分12分)[來源:學科網(wǎng)ZXXK]

某校高三文科分為四個班.高三數(shù)學調(diào)研測試后,

隨機地在各班抽取部分學生進行測試成績統(tǒng)計,

各班被抽取的學生人數(shù)恰好成等差數(shù)列,人數(shù)最少的班被抽取了22人。

抽取出來的所有學生的測試成績統(tǒng)計結(jié)果的頻率分布條形圖如圖5所示,

其中120~130(包括120分但不包括130分)的頻率為0.05,此            0

分數(shù)段的人數(shù)為5人

(1)問各班被抽取的學生人數(shù)各為多少人?

(2)在抽取的所有學生中,任取一名學生, 求分數(shù)不。本小題滿分12分)

查看答案和解析>>

 

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

C

D

A

D

C

A

B

A

D

B

 

二、填空題

13.3    14.1   15.36π    16.

三、解答題

17.解:(1)

=………………………….2分

=.………………………………………4分

    <object id="uovov"><nobr id="uovov"><tr id="uovov"></tr></nobr></object>
      <input id="uovov"></input>
      <tr id="uovov"><code id="uovov"></code></tr>

      20090327

      (2)要使函數(shù)為偶函數(shù),只需

      …………………………………………….8分

      因為,

      所以.…………………………………………………………10分

      18.(1)由題意知隨機變量ξ的取值為2,3,4,5,6.

      ,,…………….2分

       , ,

      .…………………………. …………4分

      所以隨機變量ξ的分布列為

      2

      3

      4

      5

      6

      P

      …………………………………………6分

      (2)隨機變量ξ的期望為

      …………………………12分

      19.解:(1)過點作,由正三棱柱性質(zhì)知平面,

      連接,則在平面上的射影.

      ,,…………………………2分

      中點,又,

      所以的中點.

      ,

      連結(jié),則,

      *為二面角

      的平面角.…4分

      中,

      =,

      .

      所以二面角的正切值為..…6分

      (2)中點,

      到平面距離等于到平面距離的2倍,

      又由(I)知平面

      平面平面,

      ,則平面,

      .

      故所求點到平面距離為.…………………………12分

      20.解:(1)函數(shù)的定義域為,因為

      ,

      所以 當時,;當時,.

      的單調(diào)遞增區(qū)間是;的單調(diào)遞減區(qū)間是.………6分

      (注: -1處寫成“閉的”亦可)

      (2)由得:

      ,則,

      所以時,,時,,

      上遞減,在上遞增,…………………………10分

      要使方程在區(qū)間上只有一個實數(shù)根,則必須且只需

      解之得

      所以實數(shù)的取值范圍.……………………12分

      21.解:(1)設,

      因為拋物線的焦點

      .……………………………1分

      ,…2分

      ,

      而點A在拋物線上,

      .……………………………………4分

      ………………………………6分

      (2)由,得,顯然直線,的斜率都存在且都不為0.

      的方程為,則的方程為.

          由 ,同理可得.………8分

       

      =.(當且僅當時取等號)

      所以的最小值是8.…………………………………………………………12分

      22.解:(1),由數(shù)列的遞推公式得

      ,.……………………………………………………3分

      (2)

      =

      ==.……………………5分

      數(shù)列為公差是的等差數(shù)列.

      由題意,令,得.……………………7分

      (3)由(2)知,

      所以.……………………8分

      此時=

      =,……………………10分

      *

      *

       =

      >.……………………12分

       


      同步練習冊答案
        <ins id="uovov"></ins>