題目列表(包括答案和解析)
(文) 已知橢圓的離心率為,直線l:y=x+2與以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切.(1)求橢圓C1的方程;(2)設橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1,且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程; (3)過橢圓C1的左頂點A做直線m,與圓O相交于兩點R、S,若是鈍角三角形,求直線m的斜率k的取值范圍.
(08年銀川一中二模文) 設橢圓的離心率為e=
(1)橢圓的左、右焦點分別為F1、F2、A是橢圓上的一點,且點A到此兩焦點的距離之和為4,求橢圓的方程.
(2)求b為何值時,過圓x2+y2=t2上一點M(2,)處的切線交橢圓于Q1、Q2兩點,而且OQ1⊥OQ2.
(08年天津卷文)設橢圓(,)的右焦點與拋物線的焦點相同,離心率為,則此橢圓的方程為
(A) (B) (C) (D)
(09年棗莊一模文)設橢圓的右焦點與拋物線的
焦點相同,離心率為,則此橢圓的標準方程為 。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com