所以 在和(1.+)上是單調遞增的, 查看更多

 

題目列表(包括答案和解析)

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1
,
①求矩陣A;
②已知矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
 t
(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標方程;
②設點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
(3)已知函數(shù)f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關于x的不等式f(x)≥a2-a在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

(1)由“若a,b,c∈R則(ab)c=a(bc)”類比“若a,b,c為三個向量則•c=a•”
(2)在數(shù)列{an} 中,a1=0,an+1=2an+2猜想an=2n-2
(3)在平面內“三角形的兩邊之和大于第三邊”類比在空間中“四面體的任意三個面的面積之和大于第四個面的面積”
(4)若M (-2,0),N (2,0),則以MN為斜邊的直角三角形直角頂點P的軌跡方程是x2+y2=4
上述四個推理中,得出的結論正確的是    (寫出所有正確結論的序號)

查看答案和解析>>

如圖1,已知拋物線C:y=3x2(x≥0)與直線x=a.直線x=b(其中0≤a≤b)及x軸圍成的曲邊梯形(陰影部分)的面積可以由公式S=b3-a3來計算,則如圖2,過拋物線C:y=3x2(x≥0)上一點A(點A在y軸和直線x=2之間)的切線為l,S1是拋物線y=3x2與切線l及直線y=0所圍成圖形的面積,S2是拋物線y=3x2與切線l及直線x=2所圍成圖形的面積,求面積s1+s2的最小值.
精英家教網(wǎng)

查看答案和解析>>

如圖1,已知拋物線C:y=3x2(x≥0)與直線x=a.直線x=b(其中0≤a≤b)及x軸圍成的曲邊梯形(陰影部分)的面積可以由公式S=b3-a3來計算,則如圖2,過拋物線C:y=3x2(x≥0)上一點A(點A在y軸和直線x=2之間)的切線為l,S1是拋物線y=3x2與切線l及直線y=0所圍成圖形的面積,S2是拋物線y=3x2與切線l及直線x=2所圍成圖形的面積,求面積s1+s2的最小值.

查看答案和解析>>

如圖1,已知拋物線C:y=3x2(x≥0)與直線x=a.直線x=b(其中0≤a≤b)及x軸圍成的曲邊梯形(陰影部分)的面積可以由公式S=b3-a3來計算,則如圖2,過拋物線C:y=3x2(x≥0)上一點A(點A在y軸和直線x=2之間)的切線為l,S1是拋物線y=3x2與切線l及直線y=0所圍成圖形的面積,S2是拋物線y=3x2與切線l及直線x=2所圍成圖形的面積,求面積s1+s2的最小值.

查看答案和解析>>


同步練習冊答案