如圖.在正三棱柱中.,是的中點(diǎn).點(diǎn)在上.. 查看更多

 

題目列表(包括答案和解析)

如圖,在正三棱柱中,的中點(diǎn),是線段上的動點(diǎn),且

(1)若,求證:;

(2) 求二面角的余弦值;

(3) 若直線與平面所成角的大小為,求的最大值.

 

 

 

查看答案和解析>>

如圖,在正三棱柱中,的中點(diǎn),是線段上的動點(diǎn),且
(1)若,求證:
(2) 求二面角的余弦值;
(3) 若直線與平面所成角的大小為,求的最大值.

查看答案和解析>>

如圖,在正三棱柱中,的中點(diǎn),是線段上的動點(diǎn)(與端點(diǎn)不重合),且.

(1)若,求證:;

(2)若直線與平面所成角的大小為,求的最大值.

 

查看答案和解析>>

如圖,在正三棱柱中,D為棱的中點(diǎn),若截面是面積為6的直角三角形,則此三棱柱的體積為         。

 

 

 

查看答案和解析>>

如圖,在正三棱柱中,,的中點(diǎn),是線段上的動點(diǎn)(與端點(diǎn)不重合),且.

(1)若,求證:;
(2)若直線與平面所成角的大小為,求的最大值.

查看答案和解析>>

一、選擇題:本大題共8個小題,每小題5分,共40分。

題號

1

2

3

4

5

6

7

8

答案

B

A

B

D

C

D

C

D

二、填空題:本大題共6個小題,每小題5分,共30分

9.    10. 60   11.    12.    13. 2    14. -2;1

三、解答題: 本大題共6個小題,共80分。

15. (本小題共13分)

已知函數(shù)

(Ⅰ)求函數(shù)的定義域;

(Ⅱ)求函數(shù)在區(qū)間上的最值。

解:(Ⅰ)由題意                 

所求定義域?yàn)?nbsp; {}                            …………4分

(Ⅱ)

                           …………9分

   知  

所以當(dāng)時,取得最大值為;                   …………11分

當(dāng)時,取得最小值為0 。                   …………13分

16. (本小題共13分)

已知數(shù)列中,,點(diǎn)(1,0)在函數(shù)的圖像上。

(Ⅰ)求數(shù)列 的通項(xiàng);

(Ⅱ)設(shè),求數(shù)列的前n項(xiàng)和。      

解:(Ⅰ)由已知        又         …………3分

 所以 數(shù)列是公比為的等比數(shù)列      所以        …………6分

     (Ⅱ) 由                                …………9分

      所以                …………13分

17. (本小題共14分)

如圖,在正三棱柱中,,的中點(diǎn),點(diǎn)上,。

(Ⅰ)求所成角的大小;        

(Ⅱ)求二面角的正切值;

(Ⅲ) 證明.

解:(Ⅰ)在正三棱柱中,  

又  是正△ABC邊的中點(diǎn),

                               …………3分

所成角

又     sin∠=                      …………5分

所以所成角為

(Ⅱ) 由已知得 

   ∠為二面角的平面角,     所以     …………9分

(Ⅲ)證明:  依題意  得   ,,

因?yàn)?nbsp;                       …………11分

又由(Ⅰ)中    知,且

                                      …………14分

18. (本小題共13分)

某校高二年級開設(shè)《幾何證明選講》及《數(shù)學(xué)史》兩個模塊的選修科目。每名學(xué)生至多選修一個模塊,的學(xué)生選修過《幾何證明選講》,的學(xué)生選修過《數(shù)學(xué)史》,假設(shè)各人的選擇相互之間沒有影響。

(Ⅰ)任選1名學(xué)生,求該生沒有選修過任何一個模塊的概率;

(Ⅱ)任選4名學(xué)生,求至少有3人選修過《幾何證明選講》的概率。

解:(Ⅰ)設(shè)該生參加過《幾何證明選講》的選修為事件A,

參加過《數(shù)學(xué)史》的選修為事件B, 該生沒有選修過任何一個模塊的概率為P,

所以 該生沒有選修過任何一個模塊的概率為                     …………6分

(Ⅱ)至少有3人選修過《幾何證明選講》的概率為

       

  所以至少有3人選修過《幾何證明選講》的概率為               …………13分

19. (本小題共13分)

已知函數(shù)的圖像如圖所示。

(Ⅰ)求的值;

(Ⅱ)若函數(shù)處的切線方程為,求函數(shù)的        

解析式;

(Ⅲ)若=5,方程有三個不同的根,求實(shí)數(shù)的取值范圍。

  解: 函數(shù)的導(dǎo)函數(shù)為  

(Ⅰ)由圖可知  函數(shù)的圖像過點(diǎn)(0,3),且

  得                         …………3分

(Ⅱ)依題意 

         解得  

   所以                                 …………8分

(Ⅲ)依題意

          由                                       ①

    若方程有三個不同的根,當(dāng)且僅當(dāng) 滿足        ②

  由 ① ②  得   

   所以 當(dāng)  時 ,方程有三個不同的根。     …………13分

20. (本小題共14分)

       已知分別為橢圓的左、右焦點(diǎn),直線過點(diǎn)且垂直于橢圓的長軸,動直線垂直于直線,垂足為,線段的垂直平分線交于點(diǎn)M。

(Ⅰ)求動點(diǎn)M的軌跡的方程;

(Ⅱ)過點(diǎn)作直線交曲線于兩個不同的點(diǎn)P和Q,設(shè)=,若∈[2,3],求的取值范圍。

解:(Ⅰ)設(shè)M,則,由中垂線的性質(zhì)知

||=     化簡得的方程為                  …………3分

(另:由知曲線是以x軸為對稱軸,以為焦點(diǎn),以為準(zhǔn)線的拋物線

    所以  ,         則動點(diǎn)M的軌跡的方程為

(Ⅱ)設(shè),由=  知        ①

又由 在曲線上知                   ②

由  ①  ②       解得    所以 有          …………8分

 ===  …………10分

設(shè)∈[2,3], 有 在區(qū)間上是增函數(shù),

得       進(jìn)而有      

所以    的取值范圍是                             …………14

 


同步練習(xí)冊答案