題目列表(包括答案和解析)
“”是“直線與直線相互垂直”的( )
A.充分必要條件 B.充分而不必要條件
C.必要而不充分條件 D.既不充分也不必要條件
“”是“直線與直線相互垂直”的( )
A.充分必要條件 B.充分而不必要條件
C.必要而不充分條件 D.既不充分也不必要條件
“”是“直線與直線相互垂直”的( )
A.充分必要條件 B.充分而不必要條件
C.必要而不充分條件 D.既不充分也不必要條件
A.充分必要條件 | B.充分而不必要條件 |
C.必要而不充分條件 | D.既不充分也不必要條件 |
“”是“直線與直線互相垂直”的( )
(A)充分不必要條件 (B)必要不充分條件
(C)充要條件 (D)既不充分也不必要條件
19.解:(1)平面ABC,AB平面ABC,∵AB.
又平面,且AB平面,∴又
∴平面.
(2)BC∥,∴或其補角就是異面直線與BC所成的角.
由(1)知又AC=2,∴AB=BC=,∴.
在中,由余弦定理知cos
∴=,即異面直線與BC所成的角的大小為
(3)過點D作于E,連接CE,由三垂線定理知,故是二面角的平面角,
又,∴E為的中點,∴,又,由
得,在RtCDE中,sin,所以二面角正弦值的大小為
20.解:(1)因,,故可得直線方程為:
(2),,用數(shù)學(xué)歸納法可證.
(3),,,
所以
21.解:(1)∵ 函數(shù)是R上的奇函數(shù) ∴ 即 ∴ ,由的任意性知∵ 函數(shù)在處有極值,又
∴ 是關(guān)于的方程的根,即①
∵ ∴ ②(4分)由①、②解得
(2)由(1)知,
列表如下:
1
(1,3)
3
+
0
-
0
+
增函數(shù)
極大值1
減函數(shù)
極小值
增函數(shù)
9
∴ 在上有最大值9,最小值
∵ 任意的都有∴ ,即
∴ 的取值范圍是
22.(1)
(2)由得
①
設(shè)C,CD中點為M,則有,,
,又A(0,-1)且,,
即,
(此時) ②
將②代入①得,即或,
綜上可得或.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com