15.圓內(nèi)一點,A.B在⊙O上.且.AB的中點P的軌跡方程為 . 查看更多

 

題目列表(包括答案和解析)

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計20分.請把答案寫在答題紙的指定區(qū)域內(nèi).
A.(選修4-1:幾何證明選講)
過圓O外一點P分別作圓的切線和割線交圓于A,B,且PB=7,∠ABP=∠ABC,C是圓上一點使得BC=5,求線段AB的長.
B.(選修4-2:矩陣與變換)
求曲線C:xy=1在矩陣
2
2
-
2
2
2
2
2
2
對應(yīng)的變換作用下得到的曲線C′的方程.
C.(選修4-4:坐標(biāo)系與參數(shù)方程)
已知曲線C1
x=3cosθ
y=2sinθ
(θ為參數(shù))和曲線C2:ρsin(θ-
π
4
)=
2

(1)將兩曲線方程分別化成普通方程;
(2)求兩曲線的交點坐標(biāo).
D.(選修4-5:不等式選講)
已知|x-a|<
c
4
,|y-b|<
c
6
,求證:|2x-3y-2a+3b|<c.

查看答案和解析>>

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計20分.請把答案寫在答題紙的指定區(qū)域內(nèi).
A.(選修4-1:幾何證明選講)
過圓O外一點P分別作圓的切線和割線交圓于A,B,且PB=7,∠ABP=∠ABC,C是圓上一點使得BC=5,求線段AB的長.
B.(選修4-2:矩陣與變換)
求曲線C:xy=1在矩陣對應(yīng)的變換作用下得到的曲線C′的方程.
C.(選修4-4:坐標(biāo)系與參數(shù)方程)
已知曲線C1(θ為參數(shù))和曲線C2:ρsin(θ-)=
(1)將兩曲線方程分別化成普通方程;
(2)求兩曲線的交點坐標(biāo).
D.(選修4-5:不等式選講)
已知|x-a|<,|y-b|<,求證:|2x-3y-2a+3b|<c.

查看答案和解析>>

已知F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,A是橢圓上位于第一象限內(nèi)的一點,點B也在橢圓 上,且滿足
OA
+
OB
=
0
(O為坐標(biāo)原點),
AF2
F1F2
=0
,若橢圓的離心率等于
2
2
,則直線AB的方程是  ( 。
A、y=
2
2
x
B、y=-
2
2
x
C、y=-
3
2
x
D、y=
3
2
x

查看答案和解析>>

已知F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,A是橢圓上位于第一象限內(nèi)的一點,點B也在橢圓 上,且滿足
OA
+
OB
=
0
(O為坐標(biāo)原點),
AF2
F1F2
=0
,若橢圓的離心率等于
2
2
,則直線AB的方程是  ( 。
A.y=
2
2
x
B.y=-
2
2
x
C.y=-
3
2
x
D.y=
3
2
x

查看答案和解析>>

已知F1、F2分別是橢圓=1(a>b>0)的左、右焦點,A是橢圓上位于第一象限內(nèi)的一點,點B也在橢圓上,且滿足=0(O為坐標(biāo)原點),·=0,若橢圓的離心率等于,則直線AB的方程是(  )

(A)y=x  (B)y=-x

(C)y=-x  (D)y=x

查看答案和解析>>


同步練習(xí)冊答案