給出以下四個(gè)命題: 查看更多

 

題目列表(包括答案和解析)

14、給出以下四個(gè)命題:
①函數(shù)y=f(x)在R上是增函數(shù)的充分不必要條件是f'(x)>0對(duì)x∈R恒成立;
②等比數(shù)列{an}中,a1=1,a5=16,則a3=±4;
③把函數(shù)y=sin(2-2x)的圖象向左平移1個(gè)單位,則得到的圖象對(duì)應(yīng)的函數(shù)解析式為y=-sin2x;
④若數(shù)列{an}是等比數(shù)列,則a1+a2+a3+a4,a5+a6+a7+a8,a9+a10+a11+a12也一定成等比數(shù)列.
其中正確的是
①③

查看答案和解析>>

給出以下四個(gè)命題:
①對(duì)任意兩個(gè)向量
a
,
b
都有|
a
b
|=|
a
|•|
b
|;
②若
a
,
b
是兩個(gè)不共線的向量,且
AB
=λ1
a
+
b
,
AC
=
a
+λ2
b
(λ1,λ2∈R)
,則A、B、C共線?λ1λ2=-1;
③若向量
a
=(cosα,sinα),
b
=(cosβ,sinβ)
,則
a
+
b
a
-
b
的夾角為90°;
④若向量
a
b
滿足|
a
|=3,|
b
|=4,|
a
+
b
|=
13
,則
a
,
b
的夾角為60°.
以上命題中,錯(cuò)誤命題的序號(hào)是
 

查看答案和解析>>

4、給出以下四個(gè)命題:
①“若x+y=0,則x,y互為相反數(shù)”的逆命題;
②“全等三角形的面積相等”的否命題;
③“若q≤-1,則x2+x+q=0有實(shí)根”的逆否命題;
④“不等邊三角形的三內(nèi)角相等”的逆否命題.
其中真命題是( 。

查看答案和解析>>

9、給出以下四個(gè)命題:
①如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行;
②如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面;
③如果兩條直線都平行于一個(gè)平面,那么這兩條直線互相平行;
④如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直.
其中真命題的是
①②④

查看答案和解析>>

給出以下四個(gè)命題:
①若
a
b
=0
,則
a
=
0
b
=
0
;
②簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣、分層抽樣的共同特點(diǎn)是:抽樣過(guò)程中每個(gè)個(gè)體被抽到的機(jī)會(huì)均等;
③正弦函數(shù)y=sinx在第一象限是增函數(shù);
④若數(shù)列an=n2+λn(n∈N+)為單調(diào)遞增數(shù)列,則λ取值范圍是λ>-3;
其中正確命題的序號(hào)為
 
.(寫(xiě)出所有你認(rèn)為正確的序號(hào))

查看答案和解析>>

一、選擇題:(本大題共8小題,每小題5分,滿分40分.在每小題給出的四個(gè)選項(xiàng)中。只有一項(xiàng)是符合題目要求的。)

     B、D、C、A      B、A、D、B

二、填空題:(本大題共7小題,每小題5分,滿分30分。其中13~15題是選做題,考生只能選做兩題,三題全答的,只計(jì)算前兩題得分。)

9、;  10、800;    11、①③④;   12、,1005;

13、   14、;   15、

三、解答題:(本大題共6小題,滿分80分.解答須寫(xiě)出文字說(shuō)明、證明過(guò)程和演算步驟。)

16、(1)證明:∵PA⊥底面ABCD,MN底面ABCD

∴MN⊥PA   又MN⊥AD   且PA∩AD = A

∴MN⊥平面PAD  ………………………………………………4分

MN平面PMN   ∴平面PMN⊥平面PAD  ……………………6分

(2)∵BC⊥BA   BC⊥PA   PA∩BA = A   ∴BC⊥平面PBA

∴∠BPC為直線PC與平面PBA所成的角                  

……………………………………………10分

中,

  ………………12分

17、解:(1)由題意可知、、、這5個(gè)點(diǎn)相鄰兩點(diǎn)間的弧長(zhǎng)為

的可能的取值有,2,3,4

 ,

,

于是=×+2×+3×+4×=2。…………………6分

 

 

 

(2)連結(jié)MP,取線段MP的中點(diǎn)D,則OD⊥MP,易求得OD=

當(dāng)S點(diǎn)在線段MP上時(shí),三角形SAB的面積等于××8 =,

所以只有當(dāng)S點(diǎn)落在陰影部分時(shí),面積才能大于,

S陰影 = S扇形OMP - S△OMP = ××-×= 4-8,

所以由幾何概型公式的三角形SAB的面積大于的概

率P =。  …………………12分

18、解:(1)證明:在中,由題設(shè),AD = 2可得

,于是。在矩形中,.

,所以平面.…………………………………….4分

(2)解:由題設(shè),,所以(或其補(bǔ)角)是異面直線所成的角.

中,由余弦定理得

由(1)知平面,平面,

所以,因而,于是是直角三角形,

………………………….8分

(3)解:過(guò)點(diǎn)P做于H,過(guò)點(diǎn)H做于E,連結(jié)PE

平面,平面.又,

因而平面,平面

,平面,又平面

,從而是二面角的平面角…………….12分

由題設(shè)可得,

于是在中,….14分

19、解: (1)依題意知,數(shù)列6ec8aac122bd4f6e是一個(gè)以500為首項(xiàng),-20為公差的等差數(shù)列,所以

6ec8aac122bd4f6e,   ……………3分

6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e  …………………7分

 (Ⅱ)依題意得,6ec8aac122bd4f6e,即6ec8aac122bd4f6e,

可化簡(jiǎn)得6ec8aac122bd4f6e, ①            …………………10分

6ec8aac122bd4f6e可設(shè)6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e可知6ec8aac122bd4f6e是減函數(shù),

6ec8aac122bd4f6e是增函數(shù),   又6ec8aac122bd4f6e

時(shí)不等式①成立          …………………13分

答:從今年起該企業(yè)至少經(jīng)過(guò)4年,進(jìn)行技術(shù)改造后的累計(jì)純利潤(rùn)超過(guò)不進(jìn)行技術(shù)改造的累計(jì)純利潤(rùn)……………………………………………….……14分

20、(1)連接, E、F分別為、DB的中點(diǎn), EF//,

平面,EF平面,

 EF//平面………………………………………………………4分

   (2)正方體中,平面,平面

,正方形中,,

= B,AB、平面,

平面,平面,所以,又EF//,

所以EF. ……………………………………………………………9分

(3)正方體的棱長(zhǎng)為2,分別為、DB的中點(diǎn)。

     

       

       

     

             

              ……………………………..………………14分

21、解:(1)…………………………………2分

上是增函數(shù),上恒成立

…………………………………………4分

(當(dāng)且僅當(dāng)時(shí)取等號(hào))

所以  ……………………..………………6分

(2)設(shè),則

當(dāng)時(shí),在區(qū)間上是增函數(shù)

所以的最小值為 ……………………………………………10分

當(dāng)時(shí),

因?yàn)楹瘮?shù)在區(qū)間上是增函數(shù),在區(qū)間上也是增函數(shù),

上為連續(xù)函數(shù),所以上為增函數(shù),

所以的最小值為

……………………………………14分

 

 

 

 


同步練習(xí)冊(cè)答案