題目列表(包括答案和解析)
如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1、F2為頂點(diǎn)的三角形的周長(zhǎng)為4(+1),一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.
(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請(qǐng)說明理由.
已知{an}是遞增數(shù)列,且對(duì)任意n∈N*都有an=n2+λn恒成立,則實(shí)數(shù)λ的取值范圍是( ).
A. B.(0,+∞) C.(-2,+∞) D.(-3,+∞)
已知{an}是遞增數(shù)列,且對(duì)任意n∈N*都有an=n2+λn恒成立,則實(shí)數(shù)λ的取值范圍是( )
A.(-,+∞) B.(0,+∞) C.[-2,+∞) D.(-3,+∞)
已知{an}是遞增數(shù)列,且對(duì)任意n∈N*都有an=n2+λn恒成立,則實(shí)數(shù)λ的取值范圍是( )
A.(-,+∞) B.(0,+∞) C.[-2,+∞) D.(-3,+∞)
已知f(x)=+a是奇函數(shù),求a的值及函數(shù)值域.
[分析] 本題是函數(shù)奇偶性與指數(shù)函數(shù)的結(jié)合,利用f(-x)=-f(x)恒成立,可求得a值.其值域可借助基本函數(shù)值域求得.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com