題目列表(包括答案和解析)
(本小題滿分12分)[來源:學(xué)科網(wǎng)ZXXK]
某校高三文科分為四個(gè)班.高三數(shù)學(xué)調(diào)研測試后,
隨機(jī)地在各班抽取部分學(xué)生進(jìn)行測試成績統(tǒng)計(jì),
各班被抽取的學(xué)生人數(shù)恰好成等差數(shù)列,人數(shù)最少的班被抽取了22人。
抽取出來的所有學(xué)生的測試成績統(tǒng)計(jì)結(jié)果的頻率分布條形圖如圖5所示,
其中120~130(包括120分但不包括130分)的頻率為0.05,此 0
分?jǐn)?shù)段的人數(shù)為5人
(1)問各班被抽取的學(xué)生人數(shù)各為多少人?
(2)在抽取的所有學(xué)生中,任取一名學(xué)生, 求分?jǐn)?shù)不小(本小題滿分12分)
(本小題滿分12分)
從某校高三年級(jí)800名男生中隨機(jī)抽取50名學(xué)生測量其身高,據(jù)測量被測學(xué)生的身高全部在155cm到195cm之間.將測量結(jié)果按如下方式分成8組:第一組[155,160),第二組[160,165),……,第八組[190,195],如下圖是按上述分組得到的頻率分布直方圖的一部分.已知:第1組與第8組的人數(shù)相同,第6組、第7組和第8組的人數(shù)依次成等差數(shù)列.
⑴求下列頻率分布表中所標(biāo)字母的值,并補(bǔ)充完成頻率分布直方圖;
分組 | 頻數(shù) | 頻率 | 頻率/組距 |
… | … | … | … |
[180,185) | [來源:學(xué)科網(wǎng)ZXXK] | z | |
[185,190) | m | n | p |
… | … | … | … |
(本小題滿分12分)
A、B兩個(gè)試驗(yàn)方案在某科學(xué)試驗(yàn)中成功的概率相同,已知A、B兩個(gè)方案至少一個(gè)成功的概率為0.36,
(1)求兩個(gè)方案均獲成功的概率;
(2)設(shè)試驗(yàn)成功的方案的個(gè)數(shù)為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望
(本小題滿分12分)
某項(xiàng)計(jì)算機(jī)考試按科目A、科目B依次進(jìn)行,只有大拿感科目A成績合格時(shí),才可繼續(xù)參加科目B的考試,已知每個(gè)科目只允許有一次補(bǔ)考機(jī)會(huì),兩個(gè)科目均合格方快獲得證書,現(xiàn)某人參加這項(xiàng)考試,科目A每次考試成績合格的概率為,科目B每次考試合格的概率為,假設(shè)各次考試合格與否均互不影響.
(1)求他不需要補(bǔ)考就可獲得證書的概率;
(2)在這次考試過程中,假設(shè)他不放棄所有的考試機(jī)會(huì),記他參加考試的次數(shù)為,求隨即變量的分布列和數(shù)學(xué)期望.
(本小題滿分12分)
A、B兩個(gè)試驗(yàn)方案在某科學(xué)試驗(yàn)中成功的概率相同,已知A、B兩個(gè)方案至少一個(gè)成功的概率為0.36,
(1)求兩個(gè)方案均獲成功的概率;
(2)設(shè)試驗(yàn)成功的方案的個(gè)數(shù)為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望
一、選擇題:1-5 :A D B D C 6-10: C C C D B 11-12: B B學(xué)科網(wǎng)
二、填空題: 13, 14. 3 15. 16. (1,2),(3,402)學(xué)科網(wǎng)
三、解答題
三、解答題(本大題共6小題,共70分)
17.(12分)
解:(1)∥ 2分
4分
又為銳角 6分
(Ⅱ) 由 得
又代入上式得:(當(dāng)且僅當(dāng)時(shí)等號(hào)成立。) 9分
(當(dāng)且僅當(dāng)時(shí)等號(hào)成立。) 11分
的面積的取值范圍為. 12分
18.(12分)
解法一:
(Ⅰ)取中點(diǎn),連結(jié).
,.
,.
,平面.
平面,.
(Ⅱ),,
.
又,.
又,即,且,
平面.
取中點(diǎn).連結(jié).
,.
是在平面內(nèi)的射影,
.
是二面角的平面角.
在中,,,,
.二面角的余弦值為
(Ⅲ)由(Ⅰ)知平面,
平面平面.
過作,垂足為.
平面平面,
平面.
的長即為點(diǎn)到平面的距離.
由(Ⅰ)知,又,且,
平面.平面,
.
在中,,,..
點(diǎn)到平面的距離為.
解法二:
(Ⅰ),,.
又,.
,平面.
平面,.
(Ⅱ)如圖,以為原點(diǎn)建立空間直角坐標(biāo)系.
則.設(shè).
,,.
取中點(diǎn),連結(jié).
,,
,.
是二面角的平面角.
,,,
.二面角的余弦值為.
(Ⅲ),
在平面內(nèi)的射影為正的中心,且的長為點(diǎn)到平面的距離.
如(Ⅱ)建立空間直角坐標(biāo)系.
,點(diǎn)的坐標(biāo)為.
.點(diǎn)到平面的距離為.
19.(12分)
解:(Ⅰ)由條件得,又時(shí),,
故數(shù)列構(gòu)成首項(xiàng)為1,公式為的等比數(shù)列.從而,即.
(Ⅱ)由得,
,
兩式相減得 : , 所以 .
(Ⅲ)由得
所以.
20.(12分)
解:(Ⅰ)①當(dāng)0<t10時(shí),V(t)=(-t2+14t-40)
化簡得t2-14t+40>0,
解得t<4,或t>10,又0<t10,故0<t<4.
②當(dāng)10<t12時(shí),V(t)=4(t-10)(3t-41)+50<50,
化簡得(t-10)(3t-41)<0,
解得10<t<,又10<t12,故 10<t12.
綜合得0<t<4,或10<t12,
故知枯水期為1月,2月, 3月,4月,11月,12月共6個(gè)月.
(Ⅱ)由(Ⅰ)知:V(t)的最大值只能在(4,10)內(nèi)達(dá)到.
由V′(t)=
令V′(t)=0,解得t=8(t=-2舍去).
當(dāng)t變化時(shí),V′(t) 與V (t)的變化情況如下表:
t
(4,8)
8
(8,10)
V′(t)
+
0
-
V(t)
極大值
由上表,V(t)在t=8時(shí)取得最大值V(8)=8e2+50-108.32(億立方米).
故知一年內(nèi)該水庫的最大蓄水量是108.32億立方米
21.(12分)
解:(Ⅰ)由題意得直線的方程為.
因?yàn)樗倪呅?sub>為菱形,所以.
于是可設(shè)直線的方程為.
由得.
因?yàn)?sub>在橢圓上,
所以,解得.
設(shè)兩點(diǎn)坐標(biāo)分別為,
則,,,.
所以.
所以的中點(diǎn)坐標(biāo)為.
由四邊形為菱形可知,點(diǎn)在直線上,
所以,解得.
所以直線的方程為,即.
(Ⅱ)因?yàn)樗倪呅?sub>為菱形,且,
所以.
所以菱形的面積.
由(Ⅰ)可得,
所以.
所以當(dāng)時(shí),菱形的面積取得最大值.
22.(10分)解:從⊙O外一點(diǎn)P向圓引兩條切線PA、PB和割線PCD。從A點(diǎn)作弦AE平行于CD,連結(jié)BE交CD于F。求證:BE平分CD.
【分析1】構(gòu)造兩個(gè)全等△.
連結(jié)ED、AC、AF。
CF=DF←△ACF≌△EDF←
←
←∠PAB=∠AEB=∠PFB
【分析2】利用圓中的等量關(guān)系。連結(jié)OF、OP、OB.
←∠PFB=∠POB←
←
23.(10分)解:(Ⅰ)是圓,是直線.
的普通方程為,圓心,半徑.
的普通方程為.
因?yàn)閳A心到直線的距離為,所以與只有一個(gè)公共點(diǎn).
(Ⅱ)壓縮后的參數(shù)方程分別為
:(為參數(shù)); :(t為參數(shù)).
化為普通方程為::,:,
聯(lián)立消元得,其判別式,
所以壓縮后的直線與橢圓仍然只有一個(gè)公共點(diǎn),和與公共點(diǎn)個(gè)數(shù)相同.
24.(10分)解:
(Ⅰ)
圖像如下:
(Ⅱ)不等式
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com