題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;
(Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運(yùn)動員進(jìn)行定點(diǎn)投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.(本小題滿分12分)已知是橢圓的兩個焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.
(1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時,求弦長|AB|的取值范圍.
一、選擇題:本大題考查基本概念和基本運(yùn)算.每小題5分,滿分60分.
1.A 2.C 3.C 4.B 5.C 6.D7.A 8.D 9.B 10.B
11.A 12.C
二、填空題:13、4 14. 15. 16.
三、解答題:
17.解:f(x)=a(cosx+1+sinx)+b= (2分)
(1)當(dāng)a=1時,f(x)= ,
當(dāng)時,f(x)是增函數(shù),所以f(x)的單調(diào)遞增區(qū)間為 (6分)
(2)由得,∴
∴當(dāng)sin(x+)=1時,f(x)取最小值3,即,
當(dāng)sin(x+)=時,f(x)取最大值4,即b=4. (10分)
將b=4 代入上式得,故a+b= (12分)
18.解:設(shè)甲、乙兩條船到達(dá)的時刻分別為x,y.則
若甲先到,則乙必須晚1小時以上到達(dá),即
若乙先到達(dá),則甲必須晚2小時以上到達(dá),即
作圖,(略).利用面積比可算出概率為.
19.
解:(I)如圖所示, 連結(jié)由是菱形且知,
是等邊三角形. 因?yàn)镋是CD的中點(diǎn),所以
又所以
又因?yàn)镻A平面ABCD,平面ABCD,
所以而因此 平面PAB.
又平面PBE,所以平面PBE平面PAB.
(II)由(I)知,平面PAB, 平面PAB, 所以
又所以是二面角的平面角.
在中, .
故二面角的大小為
20.解:
(1)
.
上是增函數(shù).
(2)
(i)
當(dāng)的單調(diào)遞增區(qū)間是
(ii)
當(dāng)
當(dāng)的單調(diào)遞增區(qū)間是單調(diào)遞減區(qū)間是. 所以,的單調(diào)遞增區(qū)間是單調(diào)遞減區(qū)間是.
由上知,當(dāng)x=1時,f(x)取得極大值f(1)=2
又b>1,由2=b3-3b,解得b=2.
所以,時取得最大值f(1)=2.
當(dāng)時取得最大值.
|