AOC=90°.即AOOC..AO平面BCD. ----------..4分(2)取AC的中點M.連結(jié)OM.ME.OE.由E為BC的中點知ME//AB.OE//DC. 查看更多

 

題目列表(包括答案和解析)

如圖,在四棱錐P-ABCO中,底面四邊形OABC是直角梯形,∠AOC=90°,AB∥OC,PO⊥平面OABC,且|OC|=3a,|PO|=|AO|=|AB|=a.
(1)求證:AO⊥平面POC;
(2)求異面直線PA與BC所成角的大。

查看答案和解析>>

精英家教網(wǎng)如圖,在四棱錐P-ABCO中,底面四邊形OABC是直角梯形,∠AOC=90°,AB∥OC,PO⊥平面OABC,且|OC|=3a,|PO|=|AO|=|AB|=a.
(1)求證:AO⊥平面POC;
(2)求異面直線PA與BC所成角的大小.

查看答案和解析>>

精英家教網(wǎng)如圖,四面體ABCD中,O、E分別是BD、BC的中點,AO⊥平面BCD,CA=CB=CD=BD=2.
(1)求證:面ABD⊥面AOC;
(2)求異面直線AE與CD所成角的大。

查看答案和解析>>

精英家教網(wǎng)如圖,在Rt△AOB中,∠OAB=
π6
,斜邊AB=4.Rt△AOC可以通過Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且二面角B-AO-C是直二面角.動點D在斜邊AB上.
(Ⅰ)求證:平面COD⊥平面AOB;
(Ⅱ)當D為AB的中點時,求異面直線AO與CD所成角的余弦值大;
(Ⅲ)求CD與平面AOB所成角最大時的正切值大。

查看答案和解析>>

如圖,已知空間四邊形ABCD中,O是對角線BD的中點,CA=CB=CD=BD=2,AB=AD=
2

(1)求證:CO⊥AO;
(2)求證:AO⊥平面BCD;
(3)若G為△ADC的重心,試在線段DO上確定一點F,使得GF∥平面AOC.

查看答案和解析>>


同步練習冊答案