9.如右圖.正方體ABCD-A1B1C1D1中.M.N分別為棱C1D1.C1C上的中點(diǎn).有以下四個(gè)結(jié)論:① 直線AM與CC1是相交直線,② 直線AM與NB是平行直線,③ 直線BN與MB1是異面直線,④ 直線AM與DD1是異面直線.其中正確結(jié)論的個(gè)數(shù)是A.1 B.2 C.3 D.4 查看更多

 

題目列表(包括答案和解析)

如右圖,正方體ABCD-A1B1C1D1中,
①DA1與BC1平行;
②DD1與BC1垂直;
③DA1與BB1異面;
④A1B1與BC1垂直.
以上四個(gè)命題中,正確命題的序號是(  )

查看答案和解析>>

如右圖,正方體ABCD-A1B1C1D1中,
①DA1與BC1平行;
②DD1與BC1垂直;
③DA1與BB1異面;
④A1B1與BC1垂直.
以上四個(gè)命題中,正確命題的序號是(  )
A.③④B.②③④C.①②④D.①④
精英家教網(wǎng)

查看答案和解析>>

如右圖,正方體ABCD-A1B1C1D1中,
①DA1與BC1平行;
②DD1與BC1垂直;
③DA1與BB1異面;
④A1B1與BC1垂直.
以上四個(gè)命題中,正確命題的序號是( )

A.③④
B.②③④
C.①②④
D.①④

查看答案和解析>>

如圖,正方體ABCDA1B1C1D1中,E、F分別為AB、CC1的中點(diǎn),則異面直線A1CEF所成角的余弦值是                                                                                                                                                                      (    )

(A)                    (B)                     (C)                          (D)

查看答案和解析>>

如圖,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個(gè)動點(diǎn)E、F,且EF=,則下列結(jié)論中錯(cuò)誤的是    (  )

A.AC⊥BE                     B.EF∥平面ABCD

C.三棱錐A-BEF的體積為定值  D.△AEF的面積與△BEF的面積相等

 

查看答案和解析>>

評分說明:

1.本解答給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分參考制訂相應(yīng)的評分細(xì)則.

2.對計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后繼部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分.

3.解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

4.只給整數(shù)分?jǐn)?shù).選擇題不給中間分.

一.選擇題

1.D      2.B       3.B       4.C       5.A      6.C       7.C       8.A      9.B       10.D

11.B     12.D

二.填空題

13.300;     14.60;       15.①、②③或①、③②;     16.103.

三.解答題

17.解:

(Ⅰ)因?yàn)?sub>點(diǎn)的坐標(biāo)為,根據(jù)三角函數(shù)定義可知,,,

所以.     2分

(Ⅱ)∵,,∴. 3分

由余弦定理,得 

.   5分

,∴,∴. 7分

,∴.     9分

故BC的取值范圍是.(或?qū)懗?sub>) 10分

18.解:

(Ⅰ)記“恰好選到1個(gè)曾經(jīng)參加過社會實(shí)踐活動的同學(xué)”為事件的,    1分

則其概率為.   5分

(Ⅱ)記“活動結(jié)束后該宿舍至少有3個(gè)同學(xué)仍然沒有參加過社會實(shí)踐活動”為事件的B,“活動結(jié)束后該宿舍仍然有3個(gè)同學(xué)沒有參加過社會實(shí)踐活動”為事件的C,“活動結(jié)束后該宿舍仍然有4個(gè)同學(xué)沒有參加過社會實(shí)踐活動”為事件的D. 6分

,.     10分

=+=.      12分

19.證:

(Ⅰ)因?yàn)樗倪呅?sub>是矩形∴,

又∵ABBC,∴平面.     2分

平面,∴平面CA1B⊥平面A1ABB1.       3分

解:(Ⅱ)過A1A1DB1BD,連接,

平面

BCA1D

平面BCC1B1,

故∠A1CD為直線與平面所成的角.

       5分

在矩形中,,

因?yàn)樗倪呅?sub>是菱形,∠A1AB=60°, CB=3,AB=4,

,. 7分

(Ⅲ)∵,∴平面

到平面的距離即為到平面的距離. 9分

連結(jié),交于點(diǎn)O,

∵四邊形是菱形,∴

∵平面平面,∴平面

即為到平面的距離. 11分

,∴到平面的距離為.  12分

 

20.解:

(Ⅰ)由題意,,  1分

又∵數(shù)列為等差數(shù)列,且,∴.   3分

,∴.     5分

(Ⅱ)的前幾項(xiàng)依次為, 7分

=5.    8分

.    12分

21.解:

(Ⅰ)∵,     2分

,得.     4分

的單調(diào)增區(qū)間為.  5分

(Ⅱ)當(dāng)時(shí),恒有||≤2,即恒有成立.

即當(dāng)時(shí),      6分

由(Ⅰ)知上為增函數(shù),在上為減函數(shù),在上為增函數(shù),

,,∴

max.       8分

,,∴

min.   10分

.解得

所以,當(dāng)時(shí),函數(shù)上恒有||≤2成立. 12分

22.解:

(Ⅰ)由已知,,

解得    2分

,∴

軸,.  4分

成等比數(shù)列.    6分

(Ⅱ)設(shè)、,由

得  ,

   8分

.     10分

,∴.∴,或

∵m>0,∴存在,使得.     12分

 


同步練習(xí)冊答案