17. 查看更多

 

題目列表(包括答案和解析)

(本小題滿(mǎn)分12分)二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿(mǎn)分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;

   (Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿(mǎn)分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿(mǎn)分12分)

甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿(mǎn)分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.

查看答案和解析>>

 

一、選擇題:本大題共12個(gè)小題,每小題5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12:BC.

二、填空題:本大題共4個(gè)小題,每小題4分,共16分.

13.1或; 14.-4; 15.1; 16.6.

三、解答題:本大題共6個(gè)小題,共74分.解答要寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.

17.解:(Ⅰ)∵

,????????????????????????????????????????????????????????????????????????????????????????? 3分

.????????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)∵,

,∴,當(dāng)且僅當(dāng)時(shí)。ⅲ剑ⅲ??????????? 8分

,∴,?????????????????????????????????????????? 10分

,當(dāng)且僅當(dāng)時(shí)。ⅲ剑ⅲ

故△ABC面積取最大值為.??????????????????????????????????????????????????????????????????????????? 12分

 

18.解:(Ⅰ)設(shè)袋中有黑球n個(gè),則每次取出的一個(gè)球是黑球的概率為,       3分

設(shè)“連續(xù)取兩次,都是黑球”為事件A,∴,????????????????????????????? 5分

,∴.????????????????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)由(Ⅰ)知,每次取出一個(gè)球,取到紅球的概率是.????????????????????????????? 7分

設(shè)“連續(xù)取4次球,取到紅球恰為2次”為事件B,“連續(xù)取4次球,取到紅球恰為3次”為事件C,

;??????????????????????????????????????????????????????????????????????????????? 8分

.????????????????????????????????????????????????????????????????????????????????????? 10分

∴取到紅球恰為2次或3次的概率為

故連續(xù)取4次球,取到紅球恰為2次或3次的概率等于.???????????????????????????????????? 12分

 

19.(Ⅰ)證明:∵四邊形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等邊三角形,設(shè)O是AA1的中點(diǎn),連接BO,則BO⊥AA1.???????????????????????????????????????????????????????????????????????????????????????????????? 2分

∵側(cè)面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面積為,知C到AA1的距離為,,∴△AA1C1是等邊三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.???????????????????????????????????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O(shè)為原點(diǎn),建立如圖空間直角坐標(biāo)系,則,,,,.則,,.?????????????????????????????????????????????????????????????????????????????????????????????? 5分

設(shè)是平面ABC的一個(gè)法向量,

,則.設(shè)A1到平面ABC的距離為d.

.??????????????????????????????????????????????????????????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一個(gè)法向量是,又平面ACC1的一個(gè)法向量.∴.?????????????????????????????????????????????????????????????????????? 11分

∴二面角B-AC-C1的余弦值是.???????????????????????????????????????????????????????????????? 12分

 

20.解:(Ⅰ)證明:時(shí),,;????????????????????????????????????????????????? 1分

時(shí),,所以,????????????????????????????????????????? 2分

即數(shù)列是以2為首項(xiàng),公差為2 的等差數(shù)列.????????????????????????????????????????????? 3分

,?????????????????????????????????????????????????????????????????????? 4分

當(dāng)時(shí),,當(dāng)時(shí),.?????????????????????????????? 5分

????????????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)當(dāng)時(shí),,結(jié)論成立.??????????????????????????????????????????????? 7分

當(dāng)時(shí),????????????????????? 8分

????????????????????????????????????????????????????????????????????????? 10分

.?????????????????????????????????????????????????????????????????????????????????????? 11分

綜上所述:.?????????????????????????????????????????????????????? 12分

 

21.解:(Ⅰ)∵,∴.比較系數(shù)得,,.???????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 1分

,,,?????????????????????????????????????????????????????????????????????? 2分

(Ⅱ)由(Ⅰ)知,

,令,得

x

1

2

+

0

-

0

+

0

-

∴函數(shù)有極大值,,極小值.?????????????????? 4分

∵函數(shù)在區(qū)間上存在極值,

???????????????????????????????????????????? 5分

解得

故實(shí)數(shù).??????????????????????????????????????????????????????????????????? 6分

(Ⅲ)函數(shù)的圖象與坐標(biāo)軸無(wú)交點(diǎn),有如下兩種情況:

(?)當(dāng)函數(shù)的圖象與x軸無(wú)交點(diǎn)時(shí),必須有:

???????????????????????????????????????? 7分

,函數(shù)的值域?yàn)?sub>

解得.??????????????????????????????????????????????????????????????????????? 8分

(?)當(dāng)函數(shù)的圖象與y軸無(wú)交點(diǎn)時(shí),必須有:

有意義,???????? 9分

解得.????????????????????????????????????????? 10分

由(?)、(?)知,p的范圍是,

故實(shí)數(shù)p的取值范圍是.???????????????????????????????????????????????????????????????????????? 12分

22.解:(Ⅰ)設(shè),,,,

,,

.??????????????????????????????????????????????????????????????????????????????? 2分

,∴,∴,∴.??????????????????????????? 4分

則N(c,0),M(0,c),所以,

,則,. ???????????????????????????????????????????????????????????????? 5分

∴橢圓的方程為.??????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)∵圓O與直線l相切,則,即,????????????????????????????????? 7分

消去y得

∵直線l與橢圓交于兩個(gè)不同點(diǎn),設(shè)

,

,,?????????????????????????????????????????????????????????????? 8分

,

,???????????????????????????????????????????????????????????????? 9分

,.????????????????????????????????????????????????????????????????????????? 10分

.???????????????????????????????????????? 11分

(或).

設(shè),則,,

∴S關(guān)于u在區(qū)間單調(diào)遞增,又,,?????????????????????????????? 13分

.??????????????????????????????????????????????????????????????????????????????????????????????????? 14分

 

 

 


同步練習(xí)冊(cè)答案