13. , 14. ,15. , 16. . 查看更多

 

題目列表(包括答案和解析)

(本題滿(mǎn)分15分)某市物價(jià)局調(diào)查了某種治療H1N1流感的常規(guī)藥品在2009年每個(gè)月的批發(fā)價(jià)格和該藥品在藥店的銷(xiāo)售價(jià)格,調(diào)查發(fā)現(xiàn),該藥品的批發(fā)價(jià)格按月份以12元/盒為中心價(jià)隨某一正弦曲線(xiàn)上下波動(dòng),且3月份的批發(fā)價(jià)格最高為14元/盒,7月份的批發(fā)價(jià)格最低為10元/盒。該藥品在藥店的銷(xiāo)售價(jià)格按月份以14元/盒為中心價(jià)隨另一正弦曲線(xiàn)上下波動(dòng),且5月份的銷(xiāo)售價(jià)格最高為16元/盒,9月份的銷(xiāo)售價(jià)格最低為12元/盒。

(Ⅰ)求該藥品每盒的批發(fā)價(jià)格f(x)和銷(xiāo)售價(jià)格g(x)關(guān)于月份的函數(shù)解析式;

(Ⅱ)假設(shè)某藥店每月初都購(gòu)進(jìn)這種藥品p 盒,且當(dāng)月售完,求該藥店在2009年哪些月份是盈利的?說(shuō)明你的理由.

查看答案和解析>>

(本小題滿(mǎn)分12分)

分 組

頻數(shù)

頻率

[13,14)

[14,15)

[15,16)

[16,17)

[17,18]

某班全部名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒和18秒之間。將測(cè)試結(jié)果按如下方式分為五組:第一組[13,14);第二組[14,15);…;第五組[17,18],右表是按上述分組方式得到的頻率分布表。

(1)求及上表中的的值;

(2)設(shè)m,n是從第一組或第五組中任意抽取的兩名

 學(xué)生的百米測(cè)試成績(jī),求事件“”的概率.

查看答案和解析>>

正整數(shù)按下表排列:

1     2     5     10    17    …

4     3     6     11    18    …

9     8     7     12    19    …

16    15    14    13    20    …

25    24    23    22    21    …

…    …    …    …    …    …

位于對(duì)角線(xiàn)位置的正整數(shù)1,3,7,13,21,…,構(gòu)成數(shù)列,則_______;通項(xiàng)公式=____________。

查看答案和解析>>

正整數(shù)按下表排列:

1     2     5     10    17    …

4     3     6     11    18    …

9     8     7     12    19    …

16    15    14    13    20    …

25    24    23    22    21    …

…    …    …    …    …    …

位于對(duì)角線(xiàn)位置的正整數(shù)1,3,7,13,21,…,構(gòu)成數(shù)列,則_______;通項(xiàng)公式=____________。

查看答案和解析>>

某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售。如果當(dāng)天賣(mài)不完,剩下的玫瑰花做垃圾處理。

(Ⅰ)若花店一天購(gòu)進(jìn)17枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式。

(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

(i)假設(shè)花店在這100天內(nèi)每天購(gòu)進(jìn)17枝玫瑰花,求這100天的日利潤(rùn)(單位:元)的平均數(shù);

(ii)若花店一天購(gòu)進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)不少于75元的概率.

【命題意圖】本題主要考查給出樣本頻數(shù)分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡(jiǎn)單題.

【解析】(Ⅰ)當(dāng)日需求量時(shí),利潤(rùn)=85;

當(dāng)日需求量時(shí),利潤(rùn),

關(guān)于的解析式為;

(Ⅱ)(i)這100天中有10天的日利潤(rùn)為55元,20天的日利潤(rùn)為65元,16天的日利潤(rùn)為75元,54天的日利潤(rùn)為85元,所以這100天的平均利潤(rùn)為

=76.4;

(ii)利潤(rùn)不低于75元當(dāng)且僅當(dāng)日需求不少于16枝,故當(dāng)天的利潤(rùn)不少于75元的概率為

 

查看答案和解析>>

三、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

A

B

B

D

B

D

A

B

C

B

四、填空題

13.2     14. 31    15.     16.  2.

三、解答題

17.17.解:(Ⅰ)

的最小正周期

(Ⅱ)由解得

的單調(diào)遞增區(qū)間為。

18.(Ⅰ)解:設(shè)“從甲盒內(nèi)取出的2個(gè)球均為紅球”為事件,“從乙盒內(nèi)取出的2個(gè)球均為紅球”為事件.由于事件相互獨(dú)立,且

,,

故取出的4個(gè)球均為紅球的概率是

(Ⅱ)解:設(shè)“從甲盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球;從乙盒內(nèi)取出的2個(gè)紅球?yàn)楹谇颉睘槭录?sub>,“從甲盒內(nèi)取出的2個(gè)球均為黑球;從乙盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球”為事件.由于事件互斥,且

,

故取出的4個(gè)紅球中恰有4個(gè)紅球的概率為

19.(Ⅰ)取DC的中點(diǎn)E.

∵ABCD是邊長(zhǎng)為的菱形,,∴BE⊥CD.

平面, BE平面,∴ BE.

∴BE⊥平面PDC.∠BPE為求直線(xiàn)PB與平面PDC所成的角. 

∵BE=,PE=,∴==.  

(Ⅱ)連接AC、BD交于點(diǎn)O,因?yàn)锳BCD是菱形,所以AO⊥BD.

平面, AO平面,

PD. ∴AO⊥平面PDB.

作OF⊥PB于F,連接AF,則AF⊥PB.

故∠AFO就是二面角A-PB-D的平面角.

∵AO=,OF=,∴=.

20.解:(1)令得所求增區(qū)間為,。

(2)要使當(dāng)時(shí)恒成立,只要當(dāng)時(shí)

由(1)知

當(dāng)時(shí),是增函數(shù),

當(dāng)時(shí),是減函數(shù),;

當(dāng)時(shí),是增函數(shù),

,因此。

21. 證明:由是關(guān)于x的方程的兩根得

是等差數(shù)列。

(2)由(1)知

。

符合上式, 。

(3)

  ②

①―②得 。

。

22. (1)∵

 

,∴

在點(diǎn)附近,當(dāng)時(shí),;當(dāng)時(shí),

是函數(shù)的極小值點(diǎn),極小值為;

在點(diǎn)附近,當(dāng)時(shí),;當(dāng)時(shí),

是函數(shù)的極大值點(diǎn),極大值為

,易知,

是函數(shù)的極大值點(diǎn),極大值為

是函數(shù)的極小值點(diǎn),極小值為

(2)若在上至少存在一點(diǎn)使得成立,

上至少存在一解,即上至少存在一解

由(1)知,

當(dāng)時(shí),函數(shù)在區(qū)間上遞增,且極小值為

∴此時(shí)上至少存在一解; 

當(dāng)時(shí),函數(shù)在區(qū)間上遞增,在上遞減,

∴要滿(mǎn)足條件應(yīng)有函數(shù)的極大值,即

綜上,實(shí)數(shù)的取值范圍為。

 

 


同步練習(xí)冊(cè)答案